[1]李洋,焦淑红,孙新童.基于IHS和小波变换的可见光与红外图像融合[J].智能系统学报,2012,7(06):554-559.
 LI Yang,JIAO Shuhong,SUN Xintong.Fusion of visual and infrared images based on IHS and wavelet transforms[J].CAAI Transactions on Intelligent Systems,2012,7(06):554-559.
点击复制

基于IHS和小波变换的可见光与红外图像融合(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第7卷
期数:
2012年06期
页码:
554-559
栏目:
出版日期:
2012-12-25

文章信息/Info

Title:
Fusion of visual and infrared images based on IHS and wavelet transforms
文章编号:
1673-4785(2012)06-0554-06
作者:
李洋焦淑红孙新童
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨150001
Author(s):
LI Yang JIAO Shuhong SUN Xintong
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
图像融合小波变换IHS变换灰度变换融合规则
Keywords:
image fusion wavelet transform IHS transform gray transform fusion rule
分类号:
TP391
文献标志码:
A
摘要:
针对红外与可见光图像所表现的目标特征不同,提出了一种基于IHS和小波变换的图像融合方法.首先对可见光图像进行IHS 变换得到亮度I、色度H、饱和度S 3个分量,再对红外图像进行灰度变换;然后对亮度分量和已变换红外图像进行小波分解,对低频分量和高频分量分别采用不同的融合规则;最后进行IHS逆变换得到融合图像.实验结果表明,该方法在红外与可见光图像融合处理中取得了很好的融合效果,优于传统的 IHS变换法和小波变换方法.该方法保留了可见光图像高的空间分辨率和丰富的纹理细节信息,同时融合了在可见光图像中看不到而在红外图像里可以观察到的热目标.
Abstract:
The infrared and visual images show different features for the same object, and considering these features this paper proposes an image fusion method based on IHS and wavelet transform. Firstly, the visual image is transformed by the IHS transform, and intensity(I), hue(H), saturation(S) components are obtained, and the infrared image is transformed by gray transform. Secondly, the intensity component and transformed infrared image are decomposed respectively by wavelet transform, different fusion rules are applied to coefficients of low frequency and high frequency. Finally, we could obtain the final fused image by IHS inverse transform. The experimental data shows the image fusion method is effective for the fusion of infrared and visual images and the fused image outperforms the traditional IHS transform method and the traditional IHS combining wavelet transform method. The proposed method can keep a high spatial resolution and rich texture detail information of visual image, and at the same time fuse the heat target that cannot be seen in the visible image while can be observed in the infrared image.

参考文献/References:

[1] POHL C, Van GENDEREN J L. Multisensor image fusion in remote sensing: concepts, methods and applications[J]. International Journal of Remote Sensing, 1998, 9(5):823854.
[2]葛小青. 红外与可见光图像融合的研究[D]. 重庆:重庆大学, 2010: 13.
GE Xiaoqing. Research on fusion of infrared and visible images[D]. Chongqing: Chongqing University, 2010: 13.
[3]蒋晓瑜. 基于小波变换和伪彩色方法的多重图像融合算法研究[D]. 北京:北京理工大学, 1997: 15. 
JIANG Xiaoyu. Multiple image fusion algorithm based on wavelet transform and pseudocolor method[D]. Beijing: Beijing Institute of Technology, 1997: 15.
[4]胡江华,柏连发,张保民. 像素级多传感器图像融合技术[J]. 南京理工大学学报, 1996, 20(5): 453456. 
HU Jianghua, BAI Lianfa, ZHANG Baomin. Pixel level multisensor image fusion technique[J]. Journal of Nanjing University of Science and Technology, 1996, 20(5): 453456.
[5]张加友,王江安. 红外图像融合[J]. 光电子?激光, 2000, 11(5): 337539. 
ZHANG Jiayou, WANG Jiang’an. Infrared image fusion[J]. Journal of Optoelectronics? Laser, 2000, 11(5): 537539.
[6]CARPER W J, LILLESAND T M, KIEFER R F. The use of intensityhuesaturation transformations for merging SPOT panchromatic and multispectral image data[J]. Photogrammetric Engineering & Remote Sensing, 1990, 56(4): 459467.
[7] Jr CHAVEZ P S, SIDES S C, ANDERSON J A. Comparison of three difference methods to merge multiresolution and multipectral data: landsat TM and SPOT panchromatic[J]. Photogrammetric Engineering & Remote Sensing, 1991, 57(3): 295303.
[8]BURT P J, ADELSON E H. The Laplacian pyramid as a compact image code[J]. IEEE Trans Commun, 1983, 31(4): 532540.
[9] LAINE I K A, TAYLOR F. Image fusion using steerable dyadic wavelet transform[C]//Proc of the IEEE Int′l Conf on Image Processing. Washington DC, USA, 1995: 232235.
[10]DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005,14(12): 20912106.
[11]吴怀群, 黄宵宁, 王建, 等. 一种基于熵值的自动阈值图像分割方法[J]. 应用科技,2011,38(8): 14. 
WU Huaiqun, HUANG Xiaoning, WANG Jian, et al. A method of image segmentation for automatically calculating threshold based on entropy[J]. Applied Science and Technology, 2011, 38(8): 14.
[12] TU T, SU S, SHYN H, et al. A new look at IHSlike image fusion methods[J]. Information Fusion, 2001 (2): 177186. 
[13]张晓煜,李向. 基于IHS变换与小波变换的图像融合[J]. 计算机与现代化, 2007 (8): 4853. 
ZHANG Xiaoyu, LI Xiang. Image fusion based on IHS and wavelet transforms[J]. Computer and Modernization, 2007 (8): 4853.
[14]MALLAT S. A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intellience, 1989, 11(7): 674693.
[15]唐国良,普杰信,黄心汉. 一种基于IHS和小波变换的彩色图像融合算法[J].计算机应用研究, 2006 (10): 174175. 
TANG Guoliang, PU Jiexin, HUANG Xinhan. Color image fusion algorithm based on IHS and wavelet transformation[J]. Application Research of Computers, 2006 (10):174175.
[16]郭佳. 红外与可见光图像融合技术的研究[D]. 西安:西安工业大学, 2009: 716. 
GUO Jia. Research on fusion technology of infrared and visible image[D]. Xi′an: Xi′an Technological University, 2009: 716.
[17]孙即祥. 图像处理[M]. 北京:科学出版社, 2009: 2527.
[18]曲昆鹏, 郑丽颖. 基于目标、背景比例的灰度图像自动阈值选取法[J]. 应用科技, 2011, 37(2): 5254. 
QU Kunpeng, ZHENG Liying. Automatic thresholding of grayscale image based on the proportion of object and background[J]. Applied Science and Technology, 2010,37(2): 5254.

相似文献/References:

[1]郭晓霞,杨慧中.小波去噪中软硬阈值的一种改良折衷法[J].智能系统学报,2008,3(03):222.
 GUO Xiao-xia,YANG Hui-zhong.An improved compromise for soft/hard thresholds in wavelet denoising[J].CAAI Transactions on Intelligent Systems,2008,3(06):222.
[2]张毅,罗明伟,罗元.脑电信号的小波变换和样本熵特征提取方法[J].智能系统学报,2012,7(04):339.
 ZHANG Yi,LUO Mingwei,LUO Yuan.EEG feature extraction method based on wavelet transform and sample entropy[J].CAAI Transactions on Intelligent Systems,2012,7(06):339.
[3]徐丽莎,钱晓山,阳春华.结合GM(1,1)和LSSVM的多效蒸发过程参数预测[J].智能系统学报,2012,7(05):462.
 XU Lisha,QIAN Xiaoshan,YANG Chunhua.Parameter prediction of multieffect evaporation process combining GM(1,1) with LSSVM[J].CAAI Transactions on Intelligent Systems,2012,7(06):462.
[4]李俊泽,袁小芳,张振军,等.一种基于二维GARCH模型的图像去噪方法[J].智能系统学报,2015,10(01):62.[doi:10.3969/j.issn.1673-4785.201403066]
 LI Junze,YUAN Xiaofang,ZHANG Zhenjun,et al.A method of image denoising based on two-dimensional GARCH model[J].CAAI Transactions on Intelligent Systems,2015,10(06):62.[doi:10.3969/j.issn.1673-4785.201403066]
[5]任晓霞,孙秀明,耿鹏,等.多小波和NSDFB组合域递归滤波多聚焦图像融合[J].智能系统学报,2016,11(2):241.[doi:10.11992/tis.201509017]
 REN Xiaoxia,SUN Xiuming,GENG Peng,et al.Multifocus image fusion using a recursive filter in the combined domain of multiwavelets and NSDFB[J].CAAI Transactions on Intelligent Systems,2016,11(06):241.[doi:10.11992/tis.201509017]
[6]王建,吴锡生.基于改进的稀疏表示和PCNN的图像融合算法研究[J].智能系统学报,2019,14(05):922.[doi:10.11992/tis.201805045]
 WANG Jian,WU Xisheng.Image fusion based on the improved sparse representation and PCNN[J].CAAI Transactions on Intelligent Systems,2019,14(06):922.[doi:10.11992/tis.201805045]

备注/Memo

备注/Memo:
收稿日期: 2012-05-30.
网络出版日期:2012-11-16 .
基金项目:国家自然科学基金资助项目(61201238). 
通信作者:李洋.
E-mail:liyang1230@yahoo.cn.
作者简介:
李洋,女,1987年生,硕士研究生,主要研究方向为图像融合. 
焦淑红,女,1966年生,教授,博士生导师,博士,中国图像图形学会会员,黑龙江省生物医学工程学会会员.主要研究方向为图像处理与机器视觉、精确制导与定位.获省部级科技进步二等奖2项、三等奖3项.发表学术论文多篇,其中被SCI检索1篇,EI检索40余篇,ISTP检索1篇.出版教材2部,其中《多媒体信息系统》被列为国家“十一五”规划教材. 
孙新童,男,1987年生,硕士研究生,主要研究方向为光电检测和图像融合.
更新日期/Last Update: 2013-03-19