[1]邵真天,袁杰.一种基于曲波变换的图像去块算法[J].智能系统学报,2012,(02):102-107.
 SHAO Zhentian,YUAN Jie.An image deblocking algorithm based on curvelet transformation[J].CAAI Transactions on Intelligent Systems,2012,(02):102-107.
点击复制

一种基于曲波变换的图像去块算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2012年02期
页码:
102-107
栏目:
出版日期:
2012-04-25

文章信息/Info

Title:
An image deblocking algorithm based on curvelet transformation
文章编号:
1673-4785(2012)02-0102-06
作者:
邵真天袁杰
南京大学 电子科学与工程学院,江苏 南京 210093
Author(s):
SHAO Zhentian YUAN Jie
School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
关键词:
去块算法曲波变换图像复原多尺度分析图像处理
Keywords:
deblocking algorithm curvelet transform image recovery multiscale analysisimage processing
分类号:
TP18
文献标志码:
A
摘要:
图像块效应是由于进行图像压缩编码时采用离散余弦变换(discrete cosine transform,DCT)并对其系数进行量化处理而引起的,该过程丢失了一些频率成分,并引起了子块边界不连续的跳变.针对这一问题,提出了一种基于曲波变换的图像去块算法,该算法首先对退化图像进行曲波变换,再对所获取的各层曲波系数进行处理以备复原图像.通过寻找各层中与原始图像块效应相对应的系数,对不同的层采用不同的方法,并计算图像重建时所要使用的新系数矩阵.实验表明,该算法比传统在客观和主观评估中都被普遍运用的空间域和小波去块方法,得到了更佳的图像复原效果,且保留了更多的细节.
Abstract:
The image block effect is caused by quantification processing of coefficients when using discrete cosine transformation (DCT) to compress coding of images. DCT dumps some frequencies, leading to discontinuous leaps of subblock boundaries. An image deblocking algorithm based on curvelet transformation was proposed. This algorithm first carried out curvelet transformation of degraded images, then processed the obtained curvelet coefficients separately layer by layer, so as to recover the images. The coefficients corresponding to the block effect of the original image could be found for every layer, proving that different methods apply to different layers. Then new coefficient matrixes were calculated, using the images which were reconstructed. Experiments show that the algorithm retains more details and generates better recovery results than the traditional spatial domain and wavelet deblocking methods which are used commonly for both subjective and objective evaluations. 

参考文献/References:

[1]LUO Y, KWARD R. Removing the blocking artifacts of blockbased DCT compressed images[J]. IEEE Trans on Image and Processing, 2003, 12(7): 838842.
[2]张学全,顾晓东,孙辉先. 基于自适应空域滤波的图像去块效应算法[J]. 计算机工程, 2009, 35(4): 218220.
ZHANG Xuequan, GU Xiaodong, SUN Huixian. Deblock algorithm for compressed image based on adaptive space domain filtering[J]. Computer Engineering, 2009, 35(4): 218220.
[3]李欣,陈帅. 一种有效的空域去块效应算法[J]. 信息技术, 2011, 8: 8693.
 LI Xin, CHEN Shuai. A new adaptive deblocking algorithm on spatial domain[J]. Information Technology, 2011, 8: 8693.
[4]LIEW A W C, YAN H. Blocking artifacts reduction in JPEG compressed images using overcomplete wavelet represented[C]//International Symposium on Intelligent Multimedia. Hong Kong, China, 2001: 129132.
[5]石敏,易清明,刘金梅. 一种有效的块DCT编码图像去块效应算法[J]. 计算机应用, 2007, 27(6): 14601462.
SHI Min, YI Qingming, LIU Jinmei. Effective deblocking algorithm for blockDCT images[J]. Computer Applications, 2007, 27(6): 14601462.
[6]CANDS E J, DONOHO D L. Curveletsa surprisingly effective nonadaptive representation for objects with edges[C]//Curves and Surfaces. Nashville, USA, 2000: 105120.
[7]CANDS E J, GUO F. New multiscale transforms minimum total variation synthesis: application to edgepreserving image reconstruction[J]. Signal Processsing: Special Issue on Image and Video Coding beyond Standards, 2002, 82: 15191543.
[8]CANDS E J, DEMANET L, DONOHO D, et al. Fast discrete curvelet transforms[J]. Multiscale Modeling and Simulation, 2006, 5(3): 861899.
[9]CANDS E J. Harmonic analysis of neural networks[J]. Applied and Computational Harmonic Analysis, 1999, 6(2): 197218.
[10]DONOHO D L, DUNCAN M R. Digital curvelet transform: strategy, implementation, experiments[R]. California, America: Stanford University, 2000.
[11]CANDS E J, DONOHO D L. Ridgelets: the key to higherdimensional intermittency[J]. Philosophical Transactions of the Royal Society of London Series A, 1999, 357: 24952509.
[12]陈学堂,张元,杨坤平,等. 基于第二代曲波变换算法的检测图像增强[J]. 传感器与微系统, 2008, 27(12): 810.
CHEN Xuetang, ZHANG Yuan, YANG Kunping, et al. Testingimage enhancement based on II curvelet algorithm[J]. Transducer and Microsystem Technologies, 2008, 27(12): 810.
[13]LI Y, NING H J, ZHANG Y N, et al. Nonlinear curvelet diffusion for noisy image enhancement[C]//International Conference on Image Processing. Brussels, Belguim, 2011: 22572560.
[14]武治国,王延杰. 一种基于边缘的曲波变换图像融合方法[J]. 光学技术, 2009, 35(5): 682690.
WU Zhiguo, WANG Yanjie. Image fusion algorithm using curvelet transform based on the edge detection[J] .Optical Technique, 2009, 35(5): 682690.
[15]HU X L, LU H M, ZHANG L F, et al. A new type of multifocus image fusion method based on curvelet transforms[C]//Proceedings of the 2010 Inter national Conference on Electrical and Control Engineering. Wuhan, China, 2010: 172175.
[16]DUNCAN D Y P, DO M N. Directional multiscale modeling of images using the contourlet transform[J]. IEEE Transactions on Image Processing, 2006, 15(6): 16101620.
[17]JIANG T, ZHAO X, DING W W,et al. Improved image denoising method based on curvelet transform[C]//2010 IEEE International Conference on Information and Automation. Harbin, China, 2010: 10861090.
[18]CANDS E J, DEMANET L, DONOHO D, et al. CurveLab 2.1.2[EB/OL].[20080815]. http://www.curvelet.org/.

备注/Memo

备注/Memo:
收稿日期:2011-11-22.
网络出版日期:2012-03-09.
基金项目:江苏省自然科学基金资助项目(BK2010386).
通信作者:邵真天.            E-mail: zhentianshao@gmail.com.
作者简介:
邵真天,男,1989年生,硕士研究生,主要研究方向为图像处理与模式识别.
袁杰,男,1975年生,博士,副教授,IEEE资深会员,曾3次赴日本、1次赴香港、3次赴欧洲以访问学者身份进行学术合作与交流,主要研究方向为图像与视频处理.拥有省级科技以上成果鉴定4项,申请发明专利近30项,授权专利10项.发表学术论文30余篇,多篇被SCI、EI检索.
更新日期/Last Update: 2012-07-12