[1]滕南君,鲁华祥,金敏,等.PG-RNN:一种基于递归神经网络的密码猜测模型[J].智能系统学报,2018,13(6):889-896.[doi:10.11992/tis.201712006]
 TENG Nanjun,LU Huaxiang,JIN Min,et al.PG-RNN: a password-guessing model based on recurrent neural networks[J].CAAI Transactions on Intelligent Systems,2018,13(6):889-896.[doi:10.11992/tis.201712006]
点击复制

PG-RNN:一种基于递归神经网络的密码猜测模型

参考文献/References:
[1] CASTELLUCCIA C, DÖRMUTH M, PERITO D, et al. Adaptive password-strength meters from markov models[C]//Proceedings of the 19th Network & Distributed System Security Symposium. San Diego, United States, 2012.
[2] HASHCAT[EB/OL].[2017-10-12]. https://hashcat.net.
[3] John the Ripper password cracker[EB/OL].[2017-10-15]. http://www.openwall.com/john/.
[4] WEIR M, AGGARWAL S, DE MEDEIROS B, et al. Password cracking using probabilistic context-free grammars[C]//Proceedings of the 30th IEEE Symposium on Security and Privacy. Berkeley, USA, 2009:391-405.
[5] 韩伟力, 袁琅, 李思斯, 等. 一种基于样本的模拟口令集生成算法[J]. 计算机学报, 2017, 40(5):1151-1167 HAN Weili, YUAN Lang, LI Sisi, et al. An efficient algorithm to generate password sets based on samples[J]. Chinese journal of computers, 2017, 40(5):1151-1167
[6] MA J, YANG Weining, LUO Min, et al. A study of probabilistic password models[C]//Proceedings of 2014 IEEE Symposium on Security and Privacy. San Jose, USA, 2014:689-704.
[7] AMICO M D, MICHIARDI P, ROUDIER Y, et al. Password strength:an empirical analysis[C]//Proceedings of 2010 IEEE INFOCOM. San Diego, USA, 2010:1-9.
[8] GRAVES A. Generating sequences with recurrent neural networks[J]. Computer science, arXiv:1308. 0850, 2013.
[9] SUTSKEVER I, MARTENS J, HINTON G E, et al. Generating text with recurrent neural networks[C]//Proceedings of the 28th International Conference on Machine Learning. Bellevue, USA, 2011:1017-1024.
[10] Using neural networks for password cracking[OL/EB].[2017-10-15]. https://0day.work/using-neural-networks-for-password-cracking/.
[11] HITAJ B, GASTI P, ATENIESE G, et al. PassGAN:a deep learning approach for password guessing[J]. arXiv:1709.00440, 2017.
[12] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Canada, 2014:2672-2680.
[13] MELICHER W, UR B, SEGRETI S M, et al. Fast, lean, and accurate:modeling password guessability using neural networks[C]//Proceedings of the 23rd USENIX Security Symposium. Austin, USA, 2016:175-191.
[14] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8):1735-1780.
[15] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv:1412.3555, 2014.
[16] KOLEN J, KREMER S. Gradient flow in recurrent nets:the difficulty of learning LongTerm dependencies[M].[S.l.]:Wiley-IEEE Press, 2001.
[17] BENGIO Y, SIMARD P, FRASCONI P. Learning long-term dependencies with gradient descent is difficult[J]. IEEE transactions on neural networks, 1994, 5(2):157-166.
[18] ROCKYOU[OL/EB].[2017-10-13]. http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2.
[19] YAHOO. Hackers expose 453, 000 credentials allegedly taken from Yahoo service (Updated)[EB/OL].[2012-07-12]. http://arstechnica.com/security/2012/07/yahoo-service-hacked/.
[20] MYSPACE. Information of 427 million MySpace accounts leaked, selling as a package at the price of 2800 dollars in black market[EB/OL].[2016-06-08]. https://www.wosign.com/english/News/myspace.html.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2017-12-05。
基金项目:北京市科技计划课题(Z171100002217094);中科院战略性先导科技专项(A类)(XDA18040400).
作者简介:滕南君,男,1992年生,硕士研究生,主要研究方向为数字信号处理、机器学习;鲁华祥,男,1965年生,研究员,博士生导师,主要研究方向为类神经计算芯片、类脑神经计算技术和应用系统、信息与信号处理;金敏,女,1985年生,助理研究员,主要研究方向为智能计算、模式识别与高性能计算。
通讯作者:金敏.E-mail:jinmin08@semi.ac.cn

更新日期/Last Update: 2018-12-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134