[1]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(06):770-780.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12(06):770-780.[doi:10.11992/tis.201706084]
点击复制

行人重识别研究综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年06期
页码:
770-780
栏目:
出版日期:
2017-12-25

文章信息/Info

Title:
Survey on pedestrian re-identification research
作者:
宋婉茹 赵晴晴 陈昌红 干宗良 刘峰
南京邮电大学 通信与信息工程学院, 江苏 南京 210003
Author(s):
SONG Wanru ZHAO Qingqing CHEN Changhong GAN Zongliang LIU Feng
College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
关键词:
行人重识别特征表达度量学习深度学习卷积神经网络数据集视频监控
Keywords:
pedestrian re-identificationfeature representationmetric learningdeep learningconvolutional neural networksdatasetsvideo surveillance
分类号:
TP181
DOI:
10.11992/tis.201706084
摘要:
行人重识别是智能视频分析领域的研究热点,得到了学术界的广泛重视。行人重识别旨在非重叠视角域多摄像头网络下进行的行人匹配,即确认不同位置的摄像头在不同的时刻拍摄到的行人目标是否为同一人。本文根据研究对象的不同,将目前的研究分为基于图像的行人重识别和基于视频的行人重识别两类,对这两类分别从特征描述、度量学习和数据库集3个方面将现有文献分类进行了详细地总结和分析。此外,随着近年来深度学习算法的广泛应用,也带来了行人重识别在特征描述和度量学习方面算法的变革,总结了深度学习在行人重识别中的应用,并对未来发展趋势进行了展望。
Abstract:
The intelligent video analysis method based on pedestrian re-identification has become a research focus in the field of computer vision, and it has received extensive attention from the academic community. Pedestrian re-identification aims to verify pedestrian identity in image sequences captured by cameras that are orientated in different directions at different times. This current study is classified into two categories: image-based and video-based algorithms. For these two categories, using feature description, metric learning, and various benchmark datasets, detailed analysis is performed, and a summary is presented. In addition, the wide application of deep-learning algorithms in recent years has changed pedestrian re-identification in terms of feature description and metric learning. The paper summarizes the application of deep learning in pedestrian re-identification and looks at future development trends.

参考文献/References:

[1] LI Y, WU Z, KARANAM S, et al. Real-world re-identification in an airport camera network[C]//International Conference on Distributed Smart Cameras. Venice, Italy, 2014: 35.
[2] GONG S, CRISTANI M, YAN S, et al. Person re-identification [M]. London, UK: Springer, 2014.
[3] CAMPS O, GOU M, HEBBLE T, et al. From the lab to the real world: Re-identification in an airport camera network[J]. IEEE transactions on circuits and systems for video technology, 2016, (99): 540-553.
[4] GRAY D, TAO H. Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]//European Conference on Computer Vision. Marseill, France, 2008: 262-275.
[5] PROSSER B, ZHENG W S, GONG S, et al. Person re-identification by support vector ranking[C]//The British Machine Vision Conference. Aberystwyth, British, 2010: 1-21.
[6] JURIE F, MIGNON A. PCCA: a new approach for distance learning from sparse pairwise constraints[C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 2012: 2666-2672.
[7] ZHAO R, OUYANG W, WANG X. Unsupervised salience learning for person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Oregon, USA, 2013: 3586-3593.
[8] ZHENG W S, LI X, XIANG T. Partial person re-identifi cation[C]//IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 4678-4686.
[9] CAI Q, AGGARWAL J K. Tracking human motion using multiple cameras[C]//International Conference on Pattern Recognition. Vienna, Austria, 1996: 68-72.
[10] GHEISSARI N, SEBASTIAN T B, HARTLEY R. Person re-identification using spatiotemporal appearance[C]//IEEE Conference on Computer Vision and Pattern Recognition. New York, USA, 2006: 1528-1535.
[11] GRAY D, BRENNAN S, TAO H. Evaluating appearance models for recognition, reacquisition, and tracking[J]. International journal of computer vision, 2007, 89(2): 56-68.
[12] GONG S G, CRISTANI M, YAN S C, et al. Person re-identification[J]. Advances in computer vision and pattern recognition, 2013, 42(7): 301-313.
[13] YI D, LEI Z, LI S Z, Deep metric learning for practical person re-identification[C]//International Conference on Pattern Recognition. Stockholm Waterfront, Sweden, 2014.
[14] OREOFEJ O, MEHRAN R, SHAH M. Human identity recognition in aerial images[C]//IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 2010: 709-716.
[15] JUNGLING K, BODENSTEINER C, ARENS M. Person re-identification in multi-camera networks[C]//Computer Vision and Pattern Recognition Workshops. Colorado, USA, 2010: 709-716.
[16] ZHENG W S, GONG S G, XIANG T. Re identification by relative distance comparison[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(3): 653.
[17] PEDAGADI S, ORWELL J, VELASTIN S, et al. Local fisher discriminant analysis for pedestrian re-identification [C]//IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 3318-3325.
[18] CHEN Y C, ZHENG W S, LAI J H, et al. An asymmetric distance model for cross-view feature mapping in person re-identification[J]. IEEE transactions on circuits and systems for video technology, 2016 (99): 1661-1675.
[19] XIONG F, GOU M, CAMPS O, et al. Person re-Identification using kernel-based metric learning methods[C]//European Conference on Computer Vision. Zurich, Switzerland, 2014:1-16.
[20] ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark[C]//IEEE International Conference on Computer Vision. Santiago, Chile, 2015; 1116-1124.
[21] WANG T, GONG S G, ZHU X, et al. Person re-identification by video ranking[C]//European Conference on Computer Vision. Zurich, Switzerland, 2014: 688-703.
[22] ZHENG L, BIE Z, SUN Y, et al. MARS: A video benchmark for large-scale person re-identification[M]//European Conference on Computer Vision. Springer International Publishing, 2016: 868-884.
[23] KLASER A, MARSZALEK M, SCHMID C. A spatio-temporal descriptor based on 3D-gradients[C]//British Machine Vision Conference 2008. Nottingham, British, 2008: 152-159.
[24] YOU J, WU A, LI X, et al. Top-push video-based person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las vegas, USA, 2016: 1345-1353.
[25] ZHAO R, OUYANG W, WANG X R. Unsupervised salience learning for person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 3586-3593.
[26] BAK S, CORVEE E, BREMOND F, et al. Person re-identification using haar-based and DCD-based signature[C]//IEEE International Conference on Advanced Video and Signal Based Surveillance. Boston, USA, 2010: 1-8.
[27] KOESTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraint[C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode island, 2012: 2288-2295.
[28] ENGEL C, BAUMGARTNE P, HOLZMANN M, et al. Person re-identification by support vector ranking[C]//British Machine Vision Conference 2010. Aberystwyth, UK, 2010: 1-11.
[29] SCHWARTZ W R, DAVIS L S. Learning discriminative appearance-based models using partial least squares[C]//XXⅡ Brazilian Symposium on Computer Graphics and Image Processing. Gramado, Brazil, 2010: 322-329.
[30] LAYNE R, HOSPEDALES T M, GONG S G. Person Re-identification by Attributes[C]//The British Machine Vision Conference. Nottingham, Park, 2014, 2(3): 8.
[31] SHI Z, HOSPEDALSE T M, XIANG T. Transferring a semantic representation for person re-identification and search[C]//Computer Vision and Pattern Recognition. Boston, USA, 2015: 4184-4193.
[32] MA B, SU Y, JURIE F. Local descriptors encoded by fisher vectors for person re-identification[C]//International Conference on Computer Vision. Barcelona, Spain, 2012: 413-422.
[33] CHEN D, YUAN Z, HUA G, et al. Similarity learning on an explicit polynomial kernel feature map for person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 1565-1573.
[34] GOU M, ZHANG X, RATES-BORRAS A, et al. Person re-identification in appearance impaired scenarios[C]//British Machine Vision Conference. [S.l.], 2016: 1-48.
[35] KARANAM S, LI Y, RADKE R J. Person re-identification with discriminatively trained viewpoint invariant dictionaries[C]//IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 4516-4524.
[36] SUGIYAMA, MASASHI. Local fisher discriminant analysis for supervised dimensionality reduction[J]. Machine learning, 2010, 78(1/2): 35-61.
[37] MATSUKAWA T, OKABE T, SUZUKI E, et al. Hierarchical gaussian descriptor for person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 1363-1372.
[38] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Doha, Qatar, 2012: 1097-1105.
[39] MCLAUGHLIN N, RINCON J M, MILLER P. Recurrent Convolutional Network for Video-based Person Re-Identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2012: 51-58.
[40] XIAO T, LI H, OUYANG W, et al. Learning deep feature representations with domain guided dropout for person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 1249-1258.
[41] XING E P, NG A Y, JORDAN M I, et al. Distance metric learning, with application to clustering with side-information[C]//International Conference on Neural Information Processing Systems. Vancouver: MIT Press, 2002: 521-528.
[42] WEINBERGER K Q, SAUL K L. Distance metric learning for large margin nearest neighbor classification[J]. Journal of machine learning research, 2009, 10(1): 207-244.
[43] DIKMEN M, AKBAS E, HUANG T S, et al. Pedestrian recognition with a learned metric[J]. Lecture notes in computer science, 2010, 6495: 501-512.
[44] GUILLAUMIN M, VERBEEK J, SCHMID C. Is that you? Metric learning approaches for face identification[C]//Proceedings of the 12th International Conference on Computer Vision. Kyoto, Japan, 2009: 498-505.
[45] ZHENG W, GONG S, XIANG T. Person re-identification by probabilistic relative distance comparison[C]//IEEE conference on Computer Vision and Pattern Recognition. Colorado Springs, USA, 2011: 649-656.
[46] ZHENG W S, GONG S, XIANG T. Re-identification by relative distance comparison[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(3): 653.
[47] LIAO S, HU Y, ZHU X, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015: 2197-2206.
[48] YI D, LEI Z, LI S Z. Deep metric learning for practical person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 34-39.
[49] LIU H, MA B, QIN L, et al. Set-label modeling and deep metric learning on person re-identification[J]//Neurocomputing, 2015 (151): 1283-1292.
[50] LI W, ZHAO R, XIAO T, et al. Deepreid: Deep filter pairing neural network for person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 152–159.
[51] DING S, LIN L, WANG G, et al. Deep feature learning with relative distance comparison for person re-identification[J]. Pattern recognition, 2015, 48(10): 2993-3003.
[52] ZHENG W S, GONG S, XIANG T. Associating groups of people[C]//Proceedings of the British Machine Vision Conference. London, UK, 2009: 251-259.
[53] CHEN C L, XIANG T, GONG S. Multi-camera activity correlation analysis[C]//IEEE conference on Computer Vision and Pattern Recognition. Miami, USA, 2009: 1988-1995.
[54] DONG S C, CRISTANI M, STOPPA M, et al. Custom pictorial structures for re-identification[C]//British Machine Vision Conference. Dundee, British. 2011: 159-165.
[55] LI W, ZHAO R, WANG X. Human re-identification with transferred metric learning[C]//Asian Conference on Computer Vision. Daejeon, Korea, Springer-Verlag, 2012: 31-44.
[56] LI W, WANG X. Locally aligned feature transforms across views[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Portland, USA, 2013: 3594-3601.
[57] LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 152-159.
[58] DAS A, CHAKRABORTY A, ROY-CHOWDHURY A K. Consistent re-identification in a camera network[C]//European Conference on Computer Vision. Springer International Publishing, 2014: 330-345.
[59] ROTH P M, HIRZER M, KOSTINGER M, et al. Mahalanobis distance learning for person re-identification[M]. London: Person re-identification, 2014: 247-267.
[60] SCOVANNER P, ALI S, SHAH M. A 3-dimensional sift descriptor and its application to action recognition[C]//15th ACM International Conference on Multimedia. New York, USA, 2007: 357-360.
[61] BEDAGKAR-GALA A, SHAH S K. Gait-assisted person re-identification in wide area surveillance[C]//Asian Conference on Computer Vision. Singapore: Springer International Publishing, 2014: 633-649.
[62] SIMONNET D, LEWANDOWSKI M, VELASTIN S A, et al. Re-identification of pedestrians in crowds using dynamic time warping[C]//International Conference on Computer Vision. Springer-Verlag, 2012: 423-432.
[63] MAN J,BHANU B. Individual recognition using gait energy image[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(2): 316-322.
[64] YAN Y, NI B, SONG Z, et al. Person Re-identification via recurrent feature aggregation[C]//European Conference on Computer Vision. Springer International Publishing, 2016: 701-716.
[65] ZHOU Z, HUANG Y, WANG W, et al. See the forest for the trees: joint spatial and temporal recurrent neural networks in video-based person re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017: 143-147.
[66] LIU H, JIE Z, JAYASHREE K, et al. Video-based person re-identification with accumulative motion context[J]. IEEE transactions on circuits and systems for video technology, 2017, (99):23-29.
[67] ESS A, LEIBE B, GOOL L V. Depth and appearance for mobile scene analysis[C]//International Conference on Computer Vision. Rio de Janeiro, Brazil, 2007: 1-8.
[68] BALTIERI D, VEZZANI R, CUCCHIARA R. 3DPeS: 3D people dataset for surveillance and forensics[C]//Joint ACM Workshop on Human Gesture and Behavior Understanding. DOI: 10.1145/2072572.2072590.
[69] HIRZER M, BELEZNAI C, ROTH P M, et al. Person re-identification by descriptive and discriminative classification[C]//Scandinavian Conference on Image Analysis. Springer Berlin Heidelberg, 2011: 91-102.
[70] GARCIA J, MRTINEL N, MICHELONI C, et al. Person re-identification ranking optimisation by discriminant context information analysis[C]//IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1305-1313.
[71] VARIOR R R, HALOI M, WANG G. Gated siamese convolutional neural network architecture for human re-identification[C]//European Conference on Computer Vision. Amsterdam, The Netherlands, 2016: 791-808.
[72] GEMICI M, HUANG C, SANTORO A, et al. Generative temporal models with memory[J]. arXiv preprint arXiv: 1702.04649, 2017.

备注/Memo

备注/Memo:
收稿日期:2017-06-27;改回日期:。
基金项目:国家自然科学基金项目(61471201).
作者简介:宋婉茹,女,1992年生,就读于南京邮电大学信号与信息专业,主要研究方向为行人重识别;赵晴晴,女,1993年生,就读于南京邮电大学信号与信息专业,主要研究方向为行人重识别;陈昌红,女,1982年生,副教授,主要研究方向为智能视频分析、模式识别及图像理解。发表学术论文20余篇,其中被SCI检索8篇。
通讯作者:宋婉茹.E-mail:songwanruu@163.com.
更新日期/Last Update: 2018-01-03