[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193-200.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10(2):193-200.[doi:10.3969/j.issn.1673-4785.201405060]
点击复制

深度信念网络的二代身份证异构人脸核实算法

参考文献/References:
[1] CHAN C H, TAHIR M A, KITTLER J, et al. Multiscale local phase quantization for robust component-based face recognition using kernel fusion of multiple descriptors[J]. Pattern Analysis and Machine Intelligence, 2013, 35(5): 1164-1177.
[2] LIAO S, JAIN A K, LI S Z, et al. Partial face recognition: alignment-free approach[J]. Pattern Analysis and Machine Intelligence, 2013, 35(5): 1193-1205.
[3] CAO X, WIPF D, WEN F, et al. A practical transfer learning algorithm for face verification[C]//The IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 3208-3215.
[4] SIROVICH L, KIRBY M. Low-dimensional procedure for the characterization of human faces[J]. Journal of the Optical Society of America, 1987, 4(3): 519-524.
[5] TURK M A, PENTLAND A P. Face recognition using eigenfaces[C]//Computer Vision and Pattern Recognition.[S.l.], 1991: 586-591.
[6] SCHOLKOPFT B, MULLERT K R. Fisher discriminant analysis with kernels[C]//Proc of IEEE International Workshop on Neural Networks for Signal Processing. Madison, USA, 1999: 41-48.
[7] HE X, NIYOGI P. Locality preserving projections[C]//Annual Conference on Neural Information Processing Systems. British Columbia, Canada, 2003, 16: 234-241.
[8] BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks[C]//Neural Information Processing Systems. Vancouver, Canada, 2007, 19: 153-160.
[9] LIN D, TANG X. Inter-modality face recognition[J]. European Conference on Computer Vision, 2006, 3954(4): 13-26.
[10] HINTON G E, OSINDERO S, TEH Y W, et al. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
[11] HINTON G E. Learning multiple layers of representation[J]. Trends in Cognitive Sciences, 2007, 11(10): 428-434.
[12] BARKAN O, WEILL J, WOLF L, et al. Fast high dimensional vector multiplication face recognition[C]//The IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 1-8.
[13] SIMONYAN K, PARKHI O M, VEDALDI A, et al. Fisher vector faces in the wild[C]//Proc British Machine Vision Conference. Bristol, UK, 2013: 1-12.
[14] CUI Z, LI W, XU D, et al. Fusing robust face region descriptors via multiple metric learning for face recognition in the wild[C]//Computer Vision and Pattern Recognition. Portland, Oregon, 2013: 3554-3561.
[15] KLARE B, JAIN A K. Heterogeneous face recognition: matching NIR to visible light images[C]//International Conference on Pattern Recognition. Istanbul, Turkey, 2010: 1513-1516.
[16] YI D, LIU R, CHU R, et al. Face matching between near infrared and visible light images[J]. Advances in Biometrics, 2007, 4642: 523-530.
[17] WANG R, YANG J, YI D, et al. An analysis-by-synthesis method for heterogeneous face biometrics[J]. Advances in Biometrics, 2009, 5558: 319-326.
[18] CHEN J, YI D, YANG J, et al. Learning mappings for face synthesis from near infrared to visual light images[C]//Computer Vision and Pattern Recognition. Fla, USA, 2009: 156-163.
[19] SUN Y, WANG X, TANG X, et al. Hybrid deep learning for face verification[C]//IEEE International Conference on Computer Vision. Sydney, Australia, 2013: 1489-1496.
[20] HUANG G B, RAMESH M, BERG T, et al. Labeled faces in the wild: a database for studying face recognition in unconstrained environments[R]. Massachusetts, Amherst, 2007: 07-49.
[21] HINTON G. A practical guide to training restricted Boltzmann machines[J]. Momentum, 2010, 9(1): 599-619.
[22] HINTON G.Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002,14(8): 1771-1800.
[23] HINTON G. Learning multiple layers of representation[J]. Trends in Cognitive Sciences, 2007, 11(10): 428-434.
[24] HINTON G. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[25] EDWARDS G J, COOTES T F, TAYLOR C J, et al. Face recognition using active appearance models[J]. Computer Vision—(ECCV). 1998,1407: 581-595.
[26] VIOLA P, JONES M. Fast and robust classification using asymmetric adaboost and a detector cascade[C]//Neural Information Processing Systems. Vancouver, Canada, 2002: 1311-1318.
[27] 余凯, 贾磊, 陈雨强, 等. 深度学习的昨天, 今天和明天[J]. 计算机研究与发展[J], 2013,50(9): 1799-1804.YU Kai, JIA Lei, CHEN Yuqiang, et al. Yesterday, today and tomorrow for deep learning[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
[28] HUANG G B, LEE H, LEARNED-MILLER E, et al. Learning hierarchical representations for face verification with convolutional deep belief networks[C]//Computer Vision and Pattern Recognition. Newport, USA, 2012: 2518-2525.
相似文献/References:
[1]李雪,蒋树强.智能交互的物体识别增量学习技术综述[J].智能系统学报,2017,12(2):140.[doi:10.11992/tis.201701006]
 LI Xue,JIANG Shuqiang.Incremental learning and object recognition system based on intelligent HCI: a survey[J].CAAI Transactions on Intelligent Systems,2017,12():140.[doi:10.11992/tis.201701006]
[2]吴钟强,张耀文,商琳.基于语义特征的多视图情感分类方法[J].智能系统学报,2017,12(5):745.[doi:10.11992/tis.201706026]
 WU Zhongqiang,ZHANG Yaowen,SHANG Lin.Multi-view sentiment classification of microblogs based on semantic features[J].CAAI Transactions on Intelligent Systems,2017,12():745.[doi:10.11992/tis.201706026]
[3]侯涛,张强.基于T-S型模糊加权的多模软切换的风电机组变桨控制[J].智能系统学报,2018,13(4):625.[doi:10.11992/tis.201710009]
 HOU Tao,ZHANG Qiang.Multi-mode soft-switch variable-pitch control of wind turbines based on T-S fuzzy weighting[J].CAAI Transactions on Intelligent Systems,2018,13():625.[doi:10.11992/tis.201710009]
[4]张新钰,邹镇洪,李志伟,等.面向自动驾驶目标检测的深度多模态融合技术[J].智能系统学报,2020,15(4):758.[doi:10.11992/tis.202002010]
 ZHANG Xinyu,ZOU Zhenhong,LI Zhiwei,et al.Deep multi-modal fusion in object detection for autonomous driving[J].CAAI Transactions on Intelligent Systems,2020,15():758.[doi:10.11992/tis.202002010]

备注/Memo

收稿日期:2014-5-28;改回日期:。
基金项目:国家自然科学基金资助项目(61035003,61175042).
作者简介:张媛媛,女,1991年生,硕士研究生,主要研究方向为机器视觉、机器学习等;杨婉琪,女,1988年生,博士研究生,主要研究方向为机器学习、机器视觉等;高阳,男,1972年生,教授,博士生导师,主要研究方向为强化学习、智能agent、智能应用等。
通讯作者:张媛媛.E-mail:zhangyuanyuan2013nju@gmail.com.

更新日期/Last Update: 2015-06-15
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134