[1]庄昊,杨洪勇.联合连通拓扑下的二阶多自主体系统有限时间包容控制[J].智能系统学报,2017,12(02):188-195.[doi:10.11992/tis.201605013]
 ZHUANG Hao,YANG Hongyong.Finite-time containment control of second-order multi-agent systems with jointly connected topologies[J].CAAI Transactions on Intelligent Systems,2017,12(02):188-195.[doi:10.11992/tis.201605013]
点击复制

联合连通拓扑下的二阶多自主体系统有限时间包容控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年02期
页码:
188-195
栏目:
出版日期:
2017-04-25

文章信息/Info

Title:
Finite-time containment control of second-order multi-agent systems with jointly connected topologies
作者:
庄昊 杨洪勇
鲁东大学 信息与电气工程学院, 山东 烟台 264025
Author(s):
ZHUANG Hao YANG Hongyong
School of Information and Electrical Engineering, Ludong University, Yantai 264025, China
关键词:
多领航者群集运动有限时间联合连通包容控制
Keywords:
multiple leadersflockingfinite timejointly-connectedcontainment control
分类号:
TP391
DOI:
10.11992/tis.201605013
摘要:
针对具有多领航者的二阶网络化系统群集运动问题,提出了一种有限时间收敛的包容控制算法。在此基础上,运用现代控制理论、代数图论和矩阵论等分析工具对所提出的控制算法进行理论分析,得到了当通信拓扑为动态联合连通时,二阶网络化系统在有限时间内实现群集运动的收敛条件。通过此包容控制算法,使得系统在静态拓扑和联合连通条件下均在有限时间内收敛到目标区域内。最后,应用系统仿真验证了所得结论的正确性。
Abstract:
In this paper, we propose a containment control algorithm with finite-time convergence for a second-order networked system flocking with multiple leaders. By applying modern control theory, matrix theory, and algebraic graph theory, we theoretically analyzed our proposed control algorithm; by doing so, we identified the convergence conditions required for a second-order networked system to realize flocking within finite time when the communication topology applies a dynamic joint connection. Through our containment control algorithm, the networked systems converge to object regions in finite time given the circumstances of static and jointly connected topologies. Finally, we verified the effectiveness of our proposed system via simulation examples.

参考文献/References:

[1] 杨洪勇, 郭雷, 张玉玲, 等. 复杂分数阶多自主体系统的运动一致性[J]. 自动化学报, 2014, 40(3): 489-496. YANG Hongyong, GUO Lei, ZHANG Yuling, et al. Movement consensus of complex fractional-order multi-agent systems[J]. Acta automatica sinica, 2014, 40(3): 489-496.
[2] 王祥科, 李迅, 郑志强. 多智能体系统编队控制相关问题研究综述[J]. 控制与决策, 2013, 28(11): 1601-1613. WANG Xiangke, LI Xun, ZHENG Zhiqiang. Survey of developments on multi-agent formation control related problems[J]. Control and decision, 2013, 28(11): 1601-1613.
[3] 朱旭, 闫建国, 屈耀红. 高阶多智能体系统的一致性分析[J]. 电子学报, 2012, 40(12): 2466-2471. ZHU Xu, YAN Jianguo, QU Yaohong. Consensus analysis for high-order multi-agent systems[J]. Acta electronica sinica, 2012, 40(12): 2466-2471.
[4] 夏红. 多智能体系统群一致性与编队控制研究[D]. 成都:电子科技大学, 2014. XIA Hong. Research on group consensus and formation control of multi-agent systems[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
[5] CAO Yongcan, REN Wei. Containment control with multiple stationary or dynamic leaders under a directed interaction graph[C]//Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai: IEEE, 2009: 3014-3019.
[6] LIU Huiyang, XIE Guangming, WANG Long. Necessary and sufficient conditions for containment control of networked multi-agent systems[J]. Automatica, 2012, 48(7): 1415-1422.
[7] LOU Youcheng, HONG Yiguang. Target containment control of multi-agent systems with random switching interconnection topologies[J]. Automatica, 2012, 48(5): 879-885.
[8] 张安慧, 陈健, 孔宪仁, 等. 二阶系统包容控制算法及其收敛速度分析[J]. 哈尔滨工业大学学报, 2014, 46(9): 1-8. ZHANG Anhui, CHEN Jian, KONG Xianren, et al. Containment control protocol and its convergence speed analysis for double-integrator dynamics systems[J]. Journal of Harbin institute of technology, 2014, 46(9): 1-8.
[9] MENG Ziyang, REN Wei, YOU Zheng. Distributed finite-time attitude containment control for multiple rigid bodies[J]. Automatica, 2010, 46(12): 2092-2099.
[10] 丁世宏, 李世华. 有限时间控制问题综述[J]. 控制与决策, 2011, 26(2): 161-169. DING Shihong, LI Shihua. A survey for finite-time control problems[J]. Control and decision, 2011, 26(2): 161-169.
[11] 王付永, 杨洪勇, 韩辅君. 多领航者网络化系统的动态群集运动[J]. 电子学报, 2016, 44(7): 1751-1756. WANG Fuyong, YANG Hongyong, HAN Fujun. Flocking motion of dynamic networked systems with multiple leaders[J]. Acta electronica sinica, 2016, 44(7): 1751-1756.
[12] XIAO Feng, WANG Long, CHEN Jie, et al. Finite-time formation control for multi-agent systems[J]. Automatica, 2009, 45(11): 2605-2611.
[13] 肖秋云. 多智能体系统有限时间一致性若干问题研究[D]. 无锡: 江南大学, 2015. XIAO Qiuyun. Finite-time consensus problems of multi-agent systems[D]. Wuxi: Jiangnan University, 2015. (请核对英文标题)
[14] 王付永, 杨洪勇, 翁灿. 复杂多智能体系统的最大一致性[J]. 计算机仿真, 2015, 32(6): 403-406. WANG Fuyong, YANG Hongyong, WENG Can. Maximum consistence of complex multi-agent systems[J]. Computer simulation, 2015, 32(6): 403-406.
[15] LIN Peng, JIA Yingmin. Consensus of a class of second-order multi-agent systems with time-delay and jointly-connected topologies[J]. IEEE transactions on automatic control, 2010, 55(3): 778-784.

相似文献/References:

[1]刘 佳,陈增强,刘忠信.多智能体系统及其协同控制研究进展[J].智能系统学报,2010,5(01):1.
 LIU Jia,CHEN Zeng-qiang,LIU Zhong-xin.Advances in multiAgent systems and cooperative control[J].CAAI Transactions on Intelligent Systems,2010,5(02):1.
[2]王冬梅,方华京.反馈控制策略的自适应群集运动[J].智能系统学报,2011,6(02):141.
 WANG Dongmei,FANG Huajing.An adaptive flocking motion with a leader based on a feedback control scheme[J].CAAI Transactions on Intelligent Systems,2011,6(02):141.
[3]邱华鑫,段海滨,范彦铭,等.鸽群交互模式切换模型及其同步性分析[J].智能系统学报,2020,15(2):334.[doi:10.11992/tis.201904052]
 QIU Huaxin,DUAN Haibin,FAN Yanming,et al.Pigeon flock interaction pattern switching model and its synchronization analysis[J].CAAI Transactions on Intelligent Systems,2020,15(02):334.[doi:10.11992/tis.201904052]

备注/Memo

备注/Memo:
收稿日期:2016-5-16;改回日期:。
基金项目:国家自然科学基金项目(61273152);国家自然科学基金项目(61673200).
作者简介:庄昊,男,1992年生,硕士研究生,主要研究方向为多智能体编队控制、通信技术;杨洪勇,男,1967年生,教授,主要研究方向为网络应用技术、多智能体编队控制、复杂网络控制、非线性系统控制。发表学术论文80余篇,曾获山东省软科学优秀科研成果三等奖1项,烟台市青年科技奖1项。
通讯作者:杨洪勇. E-mail:hyyang@yeah.net.
更新日期/Last Update: 1900-01-01