[1]王平,许炳招,娄保东,等.仿生机器鱼运动学模型优化与实验[J].智能系统学报,2017,12(02):196-201.[doi:10.11992/tis.201604034]
 WANG Ping,XU Bingzhao,LOU Baodong,et al.Ptimization and experimentation on the kinematic model of bionic robotic fish[J].CAAI Transactions on Intelligent Systems,2017,12(02):196-201.[doi:10.11992/tis.201604034]
点击复制

仿生机器鱼运动学模型优化与实验(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第12卷
期数:
2017年02期
页码:
196-201
栏目:
出版日期:
2017-04-25

文章信息/Info

Title:
Ptimization and experimentation on the kinematic model of bionic robotic fish
作者:
王平1 许炳招1 娄保东2 倪羽洁1
1. 河海大学 能源与电气学院, 江苏 南京 210098;
2. 河海大学 工程训练中心, 江苏 南京 210098
Author(s):
WANG Ping1 XU Bingzhao1 LOU Baodong2 NI Yujie1
1. College of energy and electrical, Hohai University, Nanjing 210098, China;
2. Mechanic Skill Training Center, Hohai University, Nanjing 210098, China
关键词:
仿生机器鱼运动学模型头部摆动游动速度转动中心游动特性鱼体波巡游
Keywords:
bionic robotic fishkinematic modelhead swayswimming speedrotation centerswimming characteristicfish body wavecruise
分类号:
TP242
DOI:
10.11992/tis.201604034
摘要:
以仿生学为基础的机器鱼是一种新型水下机器人,具有高速、高效、节能等方面优势。为进一步探索仿生机器鱼的运动机理,指出了当前仿生机器鱼运动学模型存在的不足,即未考虑因制造、鱼体结构的影响,而产生的头部左右摆动。故在考虑仿生机器鱼头部摆动的情况下,构建头部摆动方程,引入摆动偏移量,修正其运动学模型。利用MATLAB对模型进行优化,分析结果表明修正后的运动学模型更能够描述实体仿生机器鱼的游动特性。最后,将修正后的运动学模型,运用到三关节仿生机器鱼上进行实验,结果表明,该模型能够有效地抑制仿生机器鱼头部摆动,进而提高了仿生机器鱼的游动速度。
Abstract:
Bionic robotic fish are a new type of underwater robot with the advantages of high speed, high efficiency, and reductions in energy consumption. To further explore the mechanism used to move these bionic robotic fish, we focus on the present kinematic model and identify defects, e.g., the head sway caused by the manufacturer and inherent fish structure has not yet been considered. Therefore, after considering the head sway of the bionic robotic fish, we establish a head away equation, introduced the sway offset, and revised the kinematic model. Next, we used MATLAB to optimize the model. Our analytic results show that the revised kinematic model more precisely describes the swimming properties of the bionic robotic fish. Finally, we applied our revised kinematic model to experiments involving three-joint bionic robotic fish. Our experimental results show that our model can effectively restrain the head sway of the fish and thereby increase the swimming speed.

参考文献/References:

[1] 张志刚, 喻俊志, 王硕, 等. 多关节仿鱼运动推进机构的设计与实现[J]. 中国造船, 2005, 46(1): 22-28.ZHANG Zhigang, YU Junzhi, WANG Shuo, et al. Design and realization of fish-like machine propelled with multi links[J]. Shipbuilding of China, 2005, 46(1): 22-28.
[2] 王耀威, 纪志坚, 翟海川. 仿生机器鱼运动控制方法综述[J]. 智能系统学报, 2014, 9(3): 276-284. WANG Yaowei, JI Zhijian, ZHAI Haichuan. A survey on motion control of the biomimetic robotic fish[J]. CAAI transactions on intelligent systems, 2014, 9(3): 276-284.
[3] 单素素, 纪志坚, 翟海川. 采用Leader-follower和模糊反馈机制的机器鱼队形控制[J]. 智能系统学报, 2013, 8(3): 247-253. SHAN Susu, JI Zhijian, ZHAI Haichuan. The formation control of multi-robot fish based on leader-follower and fuzzy feedback mechanism[J]. CAAI transactions on intelligent systems, 2013, 8(3): 247-253.
[4] YU Junzhi, WANG Shuo, TAN Min. A simplified propulsive model of bio-mimetic robot fish and its realization[J]. Robotica, 2005, 23(1): 101-107.
[5] LI Liang, WANG Chen, XIE Guangming. Modeling of a carangiform-like robotic fish for both forward and backward swimming: based on the fixed point[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014: 800-805.
[6] 刘安全, 李亮, 罗文广, 等. 一种面向机器鱼的高精度位姿控制算法设计与实现[J]. 机器人, 2016, 38(2): 241-247. LIU Anquan, LI Liang, LUO Wenguang, et al. Design and implementation of a high precision posture control algorithm for robotic fish[J]. Robot, 2016, 38(2): 241-247.
[7] LI Liang, WANG Chen, XIE Guangming. A general CPG network and its implementation on the microcontroller[J]. Neurocomputing, 2015, 167: 299-305.
[8] 李连鹏, 苏中, 解迎刚, 等. 基于遗传算法的机器鱼水中路径规划[J]. 兵工自动化, 2015, 34(12): 93-96. LI Lianpeng, SU Zhong, XIE Yinggang, et al. Path planning of robot fish’s based on genetic algorithm[J]. Ordnance industry automation, 2015, 34(12): 93-96.
[9] 葛立明, 李宗刚. 尾鳍推进仿生机器鱼速度优化[J]. 兰州交通大学学报, 2016, 35(3): 18-23. GE Liming, LI Zonggang. The speed optimization of robotic fish propelled by caudal fin[J]. Journal of Lanzhou jiaotong university, 2016, 35(3): 18-23.
[10] LIU Jindong, HU Huosheng. Biological inspiration: from carangiform fish to multi-joint robotic fish[J]. Journal of bionic engineering, 2010, 7(1): 35-48.
[11] KATO N. Control performance in the horizontal plane of a fish robot with mechanical pectoral fins[J]. IEEE journal of oceanic engineering, 2000, 25(1): 121-129.
[12] STREITLIEN K, TRIANTAFYLLOU G S, TRIANTAFYLLOU M S. Efficient foil propulsion through vortex control[J]. AIAA journal, 1996, 34(11): 2315-2319.
[13] National Maritime Research Institute. Welcome to fish robot home page[EB/OL]. [2000-09-01]. http://www.nmri.go.jp/eng/khirata/fish/.
[14] 林海, 薛志斌, 张倩. 四关节仿生机器鱼的运动曲线分析[J]. 机械研究与应用, 2015, 28(4): 97-98, 101. LIN Hai, XUE Zhibin, ZHANG Qian. Analysis of movement curve of the four-joint robotic fish[J]. Mechanical research & application, 2015, 28(4): 97-98, 101.
[15] 喻俊志, 陈尔奎, 王硕, 等. 仿生机器鱼基本运动控制算法的研究[C]//第二届自动化与信息技术发展战略研讨会论文集. 北京: 中国自动化学会, 2002: 152-157.
[16] 魏清平, 王硕, 谭民, 等. 仿生机器鱼研究的进展与分析[J]. 系统科学与数学, 2012, 32(10): 1274-1286. WEI Qingping, WANG Shuo, TAN Min, et al. Research development and analysis of biomimetic robotic fish[J]. Journal of systems science & mathematical sciences, 2012, 32(10): 1274-1286.
[17] 曾妮, 杭观荣, 曹国辉, 等. 仿生水下机器人研究现状及其发展趋势[J]. 机械工程师, 2006(4): 18-21. ZENG Ni, HANG Guanrong, CAO Guohui, et al. Present state and tendency of bionic underwater robot[J]. Mechanical engineer, 2006(4): 18-21.
[18] 刘军考, 陈在礼, 陈维山, 等. 水下机器人新型仿鱼鳍推进器[J]. 机器人, 2000, 22(5): 427-432.LIU Junkao, CHEN Zaili, CHEN Weishan, et al. A new type of underwater turbine imitating fish-fin for underwater robot[J]. Robot, 2000, 22(5): 427-432.
[19] 杜家纬. 生命科学与仿生学[J]. 生命科学, 2004, 16(5): 317-323.DU Jiawei. Life science and bionics[J]. Chinese bulletin of life sciences, 2004, 16(5): 317-323.
[20] 夏全新, 鲁传敬, 吴磊. 鱼类波状摆动推进的数值模拟[J]. 水动力学研究与进展, 2005, 20(S): 921-928. XIA Quanxin, LU Chuanjing, WU Lei. Numerical simulation about fish undulating advancing[J]. Journal of hydrodynamics, 2005, 20(S): 921-928.

相似文献/References:

[1]任孝平,蔡自兴.基于阿克曼原理的车式移动机器人运动学建模[J].智能系统学报,2009,4(06):534.[doi:10.3969/j.issn.1673-4785.2009.06.011]
 REN Xiao-ping,CAI Zi-xing.Using the Ackerman principle for kinematic modeling of wheeled mobile robots[J].CAAI Transactions on Intelligent Systems,2009,4(02):534.[doi:10.3969/j.issn.1673-4785.2009.06.011]
[2]马正华,张倩倩,陈岚萍.四旋翼飞行器自适应反演姿态控制[J].智能系统学报,2015,10(03):454.[doi:10.3969/j.issn.1673-4785.201405008]
 MA Zhenghua,ZHANG Qianqian,CHEN Lanping.Attitude control of quadrotor aircraft via adaptive back-stepping control[J].CAAI Transactions on Intelligent Systems,2015,10(02):454.[doi:10.3969/j.issn.1673-4785.201405008]
[3]吴垠,刘忠信,陈增强,等.一种基于模糊方法的领导-跟随型多机器人编队控制[J].智能系统学报,2015,10(04):533.[doi:10.3969/j.issn.1673-4785.201407014]
 WU Yin,LIU Zhongxin,CHEN Zengqiang,et al.Formation control of leader-following type multi-robotbased on fuzzy control method[J].CAAI Transactions on Intelligent Systems,2015,10(02):533.[doi:10.3969/j.issn.1673-4785.201407014]
[4]王耀威,纪志坚,翟海川.仿生机器鱼运动控制方法综述[J].智能系统学报,2014,9(03):276.[doi:10.3969/j.issn.1673-4785.201309004]
 WANG Yaowei,JI Zhijian,ZHAI Haichuan.A survey on motion control of the biomimetic robotic fish[J].CAAI Transactions on Intelligent Systems,2014,9(02):276.[doi:10.3969/j.issn.1673-4785.201309004]

备注/Memo

备注/Memo:
收稿日期:2016-4-30;改回日期:。
基金项目:国家自然科学基金项目(30700183).
作者简介:王平,男,1962年生,副教授,主要研究方向为智能控制理论及应用、电力系统自动化技术、水电站控制与仿真技术。发表学术论文20余篇;许炳招,男,1991年生,硕士研究生,主要研究方向为机器人系统控制及定位;娄保东,男,1963年生,高级工程师,主要研究方向为机器人设计与控制、智能控制系统、波浪发电应用研究、水下水工建筑物的损伤探测研究。
通讯作者:许炳招. E-mail:793631800@qq.com.
更新日期/Last Update: 1900-01-01