[1]邱华鑫,段海滨,范彦铭,等.鸽群交互模式切换模型及其同步性分析[J].智能系统学报,2020,15(2):334-343.[doi:10.11992/tis.201904052]
 QIU Huaxin,DUAN Haibin,FAN Yanming,et al.Pigeon flock interaction pattern switching model and its synchronization analysis[J].CAAI Transactions on Intelligent Systems,2020,15(2):334-343.[doi:10.11992/tis.201904052]
点击复制

鸽群交互模式切换模型及其同步性分析

参考文献/References:
[1] BAJEC I L, HEPPNER F H. Organized flight in birds[J]. Animal behaviour, 2009, 78(4): 777-789.
[2] REN Jiaping, SUN Wanxuan, MANOCHA D, et al. Stable information transfer network facilitates the emergence of collective behavior of bird flocks[J]. Physical review E, 2018, 98(5): 052309.
[3] SAINZ-BORGO C, KOFLER S, JAFFE K. On the adaptive characteristics of bird flocks: small birds form mixed flocks[J]. Ornitología neotropical, 2018, 29: 289-296.
[4] CHEN Duxin, LIU Xiaolu, XU Bowen, et al. Intermittence and connectivity of interactions in pigeon flock flights[J]. Scientific reports, 2017, 7(1): 10452.
[5] CHEN Duxin, XU Bowen, ZHU Tao, et al. Anisotropic interaction rules in circular motions of pigeon flocks: an empirical study based on sparse Bayesian learning[J]. Physical review E, 2017, 96(2): 022411.
[6] BALLERINI M, CABIBBO N, CANDELIER R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[J]. Proceedings of the national academy of sciences of the United States of America, 2008, 105(4): 1232-1237.
[7] NAGY M, áKOS Z, BIRO D, et al. Hierarchical group dynamics in pigeon flocks[J]. Nature, 2010, 464(7290): 890-893.
[8] ZAFEIRIS A, VICSEK T. Advantages of hierarchical organization: from pigeon flocks to optimal network structures[C]//Proceedings of Research in the Decision Sciences for Global Business: Best Papers from the 2013 Annual Conference. New Jersey, United States, 2015: 281?282.
[9] FLACK A, BIRO D, GUILFORD T, et al. Modelling group navigation: transitive social structures improve navigational performance[J]. Journal of the royal society interface, 2015, 12(108): 20150213.
[10] CHEN Zhiyong, ZHANG Haitao, CHEN Xi, et al. Two-level leader-follower organization in pigeon flocks[J]. EPL (Europhysics letters), 2015, 112(2): 20008.
[11] NAGY M, VáSáRHELYI G, PETTIT B, et al. Context-dependent hierarchies in pigeons[J]. Proceedings of the national academy of sciences of the United States of America, 2013, 110(32): 13049-13054.
[12] BIRO D, SASAKI T, PORTUGAL S J. Bringing a time-depth perspective to collective Animal Behaviour[J]. Trends in ecology & evolution, 2016, 31(7): 550-562.
[13] PETTIT B, PERNA A, BIRO D, et al. Interaction rules underlying group decisions in homing pigeons[J]. Journal of the royal society interface, 2013, 10(89): 20130529.
[14] PETTIT B, áKOS Z, VICSEK T, et al. Speed determines leadership and leadership determines learning during pigeon flocking[J]. Current biology, 2015, 25(23): 3132-3137.
[15] FREEMAN R, MANN R, GUILFORD T, et al. Group decisions and individual differences: route fidelity predicts flight leadership in homing pigeons (Columba livia)[J]. Biology letters, 2010, 7(1): 63-66.
[16] FLACK A, PETTIT B, FREEMAN R, et al. What are leaders made of? The role of individual experience in determining leader-follower relations in homing pigeons[J]. Animal behaviour, 2012, 83(3): 703-709.
[17] WATTS I, PETTIT B, NAGY M, et al. Lack of experience-based stratification in homing pigeon leadership hierarchies[J]. Royal Society open science, 2016, 3(1): 150518.
[18] ZHANG Haitao, CHEN Zhiyong, VICSEK T, et al. Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks[J]. Scientific reports, 2014, 4(1): 5805.
[19] CHEN Duxin, VICSEK T, LIU Xiaolu, et al. Switching hierarchical leadership mechanism in homing flight of pigeon flocks[J]. EPL (Europhysics letters), 2016, 114(6): 60008.
[20] 陈杰, 方浩, 辛斌. 多智能体系统的协同群集运动控制[M]. 北京: 科学出版社, 2017.
[21] KHALIL H K. Noninear systems[M]. New Jersey: Prentice-Hall, 1996.
[22] VICSEK T, CZIRóK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical review letters, 1995, 75(6): 1226-1229.
[23] 罗琪楠. 基于鸽群行为机制的多无人机协调围捕及验证[D]. 北京: 北京航空航天大学, 2017.
[24] LUO Qi’nan. Research on cooperative control and pursuit-evasion strategy of multi-UAV based on pigeon behavioral mechanisms[D]. Beijing: Beihang University, 2017.
[25] 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京: 科学出版社, 2018.
相似文献/References:
[1]康 琦,汪 镭,刘小莉,等.基于群体智能框架理念的遗传算法总体模式描述[J].智能系统学报,2007,2(5):42.
 KANG Qi,WANG Lei,LIU Xiao-li,et al.General mode description genetic algorithms based on a framework of swarm intelligence[J].CAAI Transactions on Intelligent Systems,2007,2(2):42.
[2]杨东升,康 琦,刘 波,等.面向生产系统的残次品主次成因的群体智能分析[J].智能系统学报,2009,4(6):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
 YANG Dong-sheng,KANG Qi,LIU Bo,et al.Swarm intelligence analysis of primary and secondary causes of defective products for manufacturing system[J].CAAI Transactions on Intelligent Systems,2009,4(2):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
[3]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10(2):1.[doi:10.3969/j.issn.1673-4785.201403072]
[4]陈杰,沈艳霞,陆欣.基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报,2016,11(2):172.[doi:10.11992/tis.201506024]
 CHEN Jie,SHEN Yanxia,LU Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI Transactions on Intelligent Systems,2016,11(2):172.[doi:10.11992/tis.201506024]
[5]秦全德,程适,李丽,等.人工蜂群算法研究综述[J].智能系统学报,2014,9(2):127.[doi:10.3969/j.issn.1673-4785.201309064]
 QIN Quande,CHENG Shi,LI Li,et al.Artificial bee colony algorithm: a survey[J].CAAI Transactions on Intelligent Systems,2014,9(2):127.[doi:10.3969/j.issn.1673-4785.201309064]
[6]谭营,郑少秋.烟花算法研究进展[J].智能系统学报,2014,9(5):515.[doi:10.3969/j.issn.1673-4785.201409010]
 TAN Ying,ZHENG Shaoqiu.Recent advances in fireworks algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(2):515.[doi:10.3969/j.issn.1673-4785.201409010]
[7]顾大强,郑文钢.多移动机器人协同搬运技术综述[J].智能系统学报,2019,14(1):20.[doi:10.11992/tis.201801038]
 GU Daqiang,ZHENG Wengang.Technologies for cooperative transportation by multiple mobile robots[J].CAAI Transactions on Intelligent Systems,2019,14(2):20.[doi:10.11992/tis.201801038]
[8]李景灿,丁世飞.基于人工鱼群算法的孪生支持向量机[J].智能系统学报,2019,14(6):1121.[doi:10.11992/tis.201905025]
 LI Jingcan,DING Shifei.Twin support vector machine based on artificial fish swarm algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(2):1121.[doi:10.11992/tis.201905025]
[9]吴一全,周建伟.布谷鸟搜索算法研究及其应用进展[J].智能系统学报,2020,15(3):435.[doi:10.11992/tis.201811005]
 WU Yiquan,ZHOU Jianwei.Overview of the cuckoo search algorithm and its applications[J].CAAI Transactions on Intelligent Systems,2020,15(2):435.[doi:10.11992/tis.201811005]
[10]黎延海,雍龙泉,拓守恒.随机交叉-自学策略改进的教与学优化算法[J].智能系统学报,2021,16(2):313.[doi:10.11992/tis.201910045]
 LI Yanhai,YONG Longquan,TUO Shouheng.Teaching-learning-based optimization algorithm based on random crossover-self-learning strategy[J].CAAI Transactions on Intelligent Systems,2021,16(2):313.[doi:10.11992/tis.201910045]

备注/Memo

收稿日期:2019-04-22。
基金项目:国家自然科学基金项目(61803011,91948204); 中国博士后科学基金资助项目;
作者简介:邱华鑫,博士后,主要研究方向为群体智能、无人机自主控制;段海滨,教授,博士生导师,主要研究方向为无人机集群自主控制、计算机仿生视觉与智能感知、仿生智能计算理论及应用。主持国家自然科学基金重点项目等课题,出版专著3部,发表学术论 文200余篇;范彦铭,研究员,博士生导师,航空工业首批首席专家,主要研究方向为先进飞行器控制律设计与实现、无人机自主飞行控制。主持国家级研究项目10余项,获国家科技进步二等奖、国防科技进步特等奖,发表学术论文30余篇
通讯作者:段海滨.E-mail:hbduan@buaa.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134