[1]蒋新华,高晟,廖律超,等.半监督SVM分类算法的交通视频车辆检测方法[J].智能系统学报编辑部,2015,10(5):690-698.[doi:10.11992/tis.201406044]
 JIANG Xinhua,GAO Sheng,LIAO Ljuchao,et al.Traffic video vehicle detection based on semi-supervised SVM classification algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(5):690-698.[doi:10.11992/tis.201406044]
点击复制

半监督SVM分类算法的交通视频车辆检测方法

参考文献/References:
[1] XIONG Changzhen, FAN Wuyi, LI Zhengxi. Traffic flow detection algorithm based on intensity curve of high-resolution image[C]//IEEE Computer Modeling and Simulation.Sanya, China, 2010:159-162.
[2] MARIN D, AQUINO A, GEGU’NDEZ-ARIAS M E, et al. A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features[J]. IEEE Transactions on Medical Imaging, 2011, 30(1):146-158.
[3] HAN B, DAVIS L S. Density-based multifeature background subtraction with support vector machine[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5):1017-1023.
[4] CHENG Li, GONG Minglun, SCHUURMANS D, et al. Real-time discriminative background subtraction[J]. IEEE Transactions on Image Processing, 2011, 20(5):1401-1414.
[5] BARNICH O, VAN DROOGENBROECK M. ViBe:A universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6):1709-1724.
[6] FU Wenlong, JOHNSTON M, ZHANG Mengjie. Genetic programming for edge detection:a global approach[C]//2011 IEEE Congress on Evolutionary Computation. Wellington, New Zealand, 2011:254-261.
[7] Al-GHAILI A M, MASHOHOR S, RAMLI A R, et al. Vertical-edge-based car-license-plate detection method[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1):26-38.
[8] 钱志明, 杨家宽, 段连鑫. 基于视频的车辆检测与跟踪研究进展[J]. 中南大学学报:自然科学版, 2013, 44(S2):222-227. QIAN Zhiming, YANG Jiakuan, DUAN Lianxin. Research advances in video-based vehicle detection and tracking[J]. Journal of Central South University:Science and Technology, 2013,44(S2):222-227.
[9] CHEN Xueyun, XIANG Shiming, LIU Chenglin, et al. Vehicle detection in satellite images by hybrid deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(10):1797-1801.
[10] ZHANG Bailing. Reliable classification of vehicle types based on cascade classifier ensembles[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(1):322-332.
[11] CHENG H Y, WENG C C, CHEN Yiying. Vehicle detection in aerial surveillance using dynamic Bayesian networks[J]. IEEE Transactions on Image Processing, 2012, 21(4):2152-2159.
[12] CARAFFI C, VOJIR T, TREFNY J, et al. A system for real-time detection and tracking of vehicles from a single car-mounted camera[C]//201215th International IEEE Conference on Intelligent Transportation Systems. Anchorage, USA, 2012:975-982.
[13] CAO Xianbin, WU Changxia, YAN Pingkun, et al. Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos[C]//201118th IEEE International Conference on Image Processing. Hefei, China, 2011:2421-2424.
[14] DARNST?DT M, SIMON H U, SZ?RéNYI B. Supervised learning and co-training[J]. Theoretical Computer Science, 2014, 519:68-87.
[15] 刘杨磊, 梁吉业, 高嘉伟, 等. 基于Tri-training的半监督多标记学习算法[J]. 智能系统学报, 2013, 8(5):439-445. LIU Yanglei, LIANG Jiye, GAO Jiawei, et al. Semi-supervised multi-label learning algorithm based on Tri-training[J]. CAAI Transactions on Intelligent Systems, 2013, 8(5):439-445.
[16] WANG Xiaoyu, HAN T X, YAN Shuicheng. An HOG-LBP human detector with partial occlusion handling[C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto, Japan, 2009:32-39.
[17] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005:886-893.
[18] CHANG C C, LIN C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology (TIST), 2011, 2(3):27.
[19] 钱晓山, 阳春华. 基于GEP的最小二乘支持向量机模型参数选择[J]. 智能系统学报, 2012, 7(3):225-229. QIAN Xiaoshan, YANG Chunhua. A parameter selection method of a least squares support vector machine based on gene expression programming[J]. CAAI Transactions on Intelligent Systems, 2012, 7(3):225-229.
[20] BEN-HUR A, WESTON J. A user’s guide to support vector machines[M]//Data Mining Techniques for the Life Sciences. Washington,DC:Humana Press, 2010:223-239.
[21] 胡光龙, 秦世引. 动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J]. 智能系统学报, 2012, 7(1):61-68. HU Guanglong, QIN Shiyin. High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J]. CAAI Transactions on Intelligent Systems, 2012, 7(1):61-68.
相似文献/References:
[1]丁爱玲,杨康,齐怀超,等.单边侧阴影特征的车辆阴影去除[J].智能系统学报编辑部,2015,10(2):281.[doi:10.3969/j.issn.1673-4785.201310020]
 DING Ailing,YANG Kang,QI Huaichao,et al.Vehicle shadow removal based on the characteristics of the single side shadow[J].CAAI Transactions on Intelligent Systems,2015,10(5):281.[doi:10.3969/j.issn.1673-4785.201310020]
[2]史东承,倪康.压缩感知W-HOG特征的运动手势跟踪[J].智能系统学报编辑部,2016,11(1):124.[doi:10.11992/tis.201507005]
 SHI Dongcheng,NI Kang.Motion gesture tracking based on compressed sensing W-HOG features[J].CAAI Transactions on Intelligent Systems,2016,11(5):124.[doi:10.11992/tis.201507005]
[3]姜英,王延江.REM记忆模型在图像分类识别中的应用[J].智能系统学报编辑部,2017,12(3):310.[doi:10.11992/tis.201605010]
 JIANG Ying,WANG Yanjiang.Application of REM memory model in image recognition and classification[J].CAAI Transactions on Intelligent Systems,2017,12(5):310.[doi:10.11992/tis.201605010]
[4]徐志通,骆炎民,柳培忠.联合加权重构轨迹与直方图熵的异常行为检测[J].智能系统学报编辑部,2018,13(6):1015.[doi:10.11992/tis.201706070]
 XU Zhitong,LUO Yanmin,LIU Peizhong.Abnormal behavior detection of joint weighted reconstruction trajectory and histogram entropy[J].CAAI Transactions on Intelligent Systems,2018,13(5):1015.[doi:10.11992/tis.201706070]
[5]王科平,蔡凯利,王红旗,等.一种基于雨线主方向自适应的全局稀疏去雨模型[J].智能系统学报编辑部,2020,15(2):271.[doi:10.11992/tis.201809042]
 WANG Keping,CAI Kaili,WANG Hongqi,et al.A global sparse rain removal model based on rain streaks main direction adaptation[J].CAAI Transactions on Intelligent Systems,2020,15(5):271.[doi:10.11992/tis.201809042]

备注/Memo

收稿日期:2014-06-22;改回日期:。
基金项目:国家自然科学基金资助项目(61304199,41471333);福建省自然科学基金资助项目(2013J01214);福建省科技重大专项专题资助项目(2011HZ0002-1);福建省交通科技计划项目(201318),福建省教育厅B类科研项目(JB3213).
作者简介:蒋新华,男,1956年生,教授,博士生导师,福建工程学院校长,主要研究方向为控制理论应用、电力机车智能故障诊断技术、移动互联网关键技术和车联网关键技术。主持和参加铁道部、湖南省、福建省等重要科学研究项目30余项,发表学术论文100余篇;高晟,男,1989年生,硕士研究生,主要研究方向为交通信息分析及图像处理。参与国家自然科学基金资助项目1项,授权发明专利4项;廖律超,1980年生,工程师,博士研究生,主要研究方向为海量动态信息数据挖掘分析、交通信息处理关键技术。
通讯作者:高晟.E-mail:csugaosheng@163.com.

更新日期/Last Update: 2015-11-16
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134