[1]钱云,梁艳春,翟天放,等.进化支持向量机模型及其在水质评估中的应用[J].智能系统学报编辑部,2015,10(5):684-689.[doi:10.11992/tis.201410018]
 QIAN Yun,LIANG Yanchun,ZHAI Tianfang,et al.Evolutionary support vector machine model and its application in water quality assessment[J].CAAI Transactions on Intelligent Systems,2015,10(5):684-689.[doi:10.11992/tis.201410018]
点击复制

进化支持向量机模型及其在水质评估中的应用(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年5期
页码:
684-689
栏目:
出版日期:
2015-10-25

文章信息/Info

Title:
Evolutionary support vector machine model and its application in water quality assessment
作者:
钱云12 梁艳春1 翟天放3 刘洪志4 时小虎1
1. 吉林大学 计算机科学与技术学院, 吉林 长春 130012;
2. 北华大学 电气信息工程学院, 吉林 吉林 132021;
3. 吉林省水利科学研究院, 吉林 长春 130022;
4. 吉林省计算中心 吉林省计算机技术研究所, 吉林 长春 130012
Author(s):
QIAN Yun12 LIANG Yanchun1 ZHAI Tianfang3 LIU Hongzhi4 SHI Xiaohu1
1. College of Computer Science and Technology, Jilin University, Changchun 130012, China;
2. College of Electrical and Information Engineering, Beihua University, Jilin 132021, China;
3. Jilin Water Resources Research Institute, Changchun 130022, China;
4. Computing Center of Jilin Province, Computer Technology Research Institute of Jilin Province, Changchun 130012, China
关键词:
水质评估模型支持向量机(SVM)遗传算法(GA)径向基核函数惩罚因子
Keywords:
water quality assessment modelsupport vector machine (SVM)genetic algorithms (GA)radial basis kernel functionpenalty factor
分类号:
TP391.4
DOI:
10.11992/tis.201410018
文献标志码:
A
摘要:
水质评估模型是进行水质规划、环境水污染控制和环境管理的有效工具。利用遗传算法(GA)对支持向量机(SVM)分类算法的径向基核函数参数σ和错分惩罚因子C进行组合优化,建立进化支持向量机模型,并将该模型应用于水质评估中。将该模型分别应用于松花江松原段、松花江哈尔滨段、黄河甘肃段和吉林桦甸关门砬子水库的真实数据上进行测试。实验结果表明,提出的进化支持向量机水质评估模型在分类精度和泛化能力上较经典SVM方法都有所提高,表明了该方法的有效性。
Abstract:
A water quality assessment model is an effective tool for water quality planning, environmental water pollution control and environment management. In this paper, an evolutionary support vector machine (SVM) model is developed by using genetic algorithm (GA) to combine and optimize the radial basis kernel function parameter σ and error penalty factor C of a SVM algorithm. This model is then extended to water quality assessment. To test the effectiveness of the proposed method, it is applied to a simulation on real data of the Songyuan and Harbin sections of the Songhua River, the Gansu section of the Yellow River, and the Jilin Huadian Guanmenlizi water reservoir. Simulation results show that, compared with the classical SVM method, the classification accuracy and generalization ability of the evolutionary support vector machine model for water quality assessment are improved.

参考文献/References:

[1] 朱灵峰, 王燕, 王阳阳, 等. 基于单因子指数法的海浪河水质评价[J]. 江苏农业科学, 2012, 40(3):326-327. ZHU Lingfeng, WANG Yan, WANG Yangyang, et al. Water quality assessment of Hailang River using single factor index method[J]. Journal of Jiangsu Agricultural Sciences, 2012, 40(3):326-327.
[2] 张龙江. 水质评价的模糊综合评判——加权平均复合模型应用[J]. 环境工程, 2001, 19(6):53-55. ZHANG Longjiang. Application of fuzzy comprehensive judgement and weighted average models to water quality assessment[J]. Environmental Engineering, 2001, 19(6):53-55.
[3] 钱天鸣, 余波. 内梅罗污染指数在运河水质评价中的应用[J]. 环境污染与防治, 1999, 21(增刊):67-68, 71. QIAN Tianming, YU Bo. Application of the canal water quality evaluation using Nemerow pollution index[J]. Environmental Pollution & Control, 1999, 21(S):67-68, 71.
[4] 张召跃, 王海燕, 朱灵峰, 等. 主成分分析法在水节霉生长水体水质评价中的应用[J]. 环境工程学报, 2011, 5(5):1035-1040. ZHANG Zhaoyue, WANG Haiyan, ZHU Lingfeng, et al. Application of principal component analysis in quality evaluation of water body with Leptomitus lacreus growth[J]. Chinese Journal of Environmental Engineering, 2011, 5(5):1035-1040.
[5] 李凤超, 刘存歧, 管越强, 等. 应用多元分析方法评价白洋淀水质现状[J]. 河北大学学报:自然科学版, 2006, 26(4):405-410. LI Fengchao, LIU Cunqi, GUAN Yueqiang, et al. Evaluating current water quality of Baiyangdian Lake by using multi-variate analysis[J]. Journal of Hebei University:Natural Science Edition, 2006, 26(4):405-410.
[6] LIU L, ZHOU J Z, AN X L, et al. Using fuzzy theory and information entropy for water quality assessment in Three Gorges region, China[J]. Expert Systems with Applications, 2010, 37(3):2517-2521.
[7] 张萌, 倪乐意, 谢平, 等. 基于聚类和多重评价法的河流质量评价研究[J]. 环境科学与技术, 2009, 32(12):178-185. ZHANG Meng, NI Leyi, XIE Ping, et al. Water quality assessment of a large river based on multiple assessment method and cluster analysis[J]. Environmental Science & Technology, 2009, 32(12):178-185.
[8] WEN C G, LEE C S. A neural network approach to multiobjective optimization for water quality management in a river basin[J]. Water Resources Research, 1998, 34(3):427-436.
[9] 黄胜伟, 董曼玲. 自适应变步长BP神经网络在水质评价中的应用[J]. 水利学报, 2002, (10):119-123. HUANG Shengwei, DONG Manling. Application of adaptive variable step size BP network to evaluate water quality[J]. Journal of Hydraulic Engineering, 2002, (10):119-123.
[10] 罗定贵, 王学军, 郭青. 基于MATLAB实现的ANN方法在地下水质评价中的应用[J]. 北京大学学报:自然科学版, 2004, 40(2):296-302. LUO Dinggui, WANG Xuejun, GUO Qing. The application of ANN realized by MATLAB to underground water quality assessment[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2004, 40(2):296-302.
[11] 曹艳龙, 汪西莉, 周兆永. 基于BP神经网络的渭河水质评价方法[J]. 计算机工程与设计, 2008, 29(22):5910-5912, 5916. CAO Yanlong, WANG Xili, ZHOU Zhaoyong. Water quality assessment method of Wei river based on BP neural network[J]. Computer Engineering and Design, 2008, 29(22):5910-5912, 5916.
[12] VAPNIK V. The nature of statistical learning theory[M]. New York:Springer Verlag, 1995:267-290.
[13] XIANG Y R, JIANG L Z. Water quality prediction using LS-SVM with particle swarm optimization[C]//Second International Workshop Discovery and Data Mining. Moscow, Russia, 2009:901-904.
[14] SINGH K P, BASANT N, GUPTA S. Support vector machines in water quality management[J]. Analytica Chimica Acta, 2011, 703(2):152-162.
[15] 张艳秋, 王蔚. 利用遗传算法优化的支持向量机垃圾邮件分类[J]. 计算机应用, 2009, 29(10):2755-2757. ZHANG Yanqiu, WANG Wei. E-mail classification by SVM optimized with genetic algorithm[J]. Journal of Computer Applications, 2009, 29(10):2755-2757.
[16] SAINI L M, AGGARWAL S K, KUMAR A. Parameter optimisation using genetic algorithm for support vector machine-based price-forecasting model in National electricity market[J]. IET Generation, Transmission & Distribution, 2010, 4(1):36-49.
[17] SRINIVAS M, PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithm[J]. IEEE Transactions on Systems Man and Cybernetics, 1994, 24(4):656-667.
[18] 中国环境科学研究院. GB3838_2002地表水环境质量标准[S]. 北京:中国环境科学出版社, 2002. China Environmental Science Research Institute. GB3838_2002 The surface water environment quality standard[S]. Beijing:China Environmental Science Press, 2002.
[19] CHANG C C, LIN C J. LIBSVM:a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):27.

相似文献/References:

[1]张毅,廖巧珍,罗元.融合二阶HOG与CS-LBP的头部姿态估计[J].智能系统学报编辑部,2015,10(5):741.[doi:10.11992/tis.201506019]
 ZHANG Yi,LIAO Qiaozhen,LUO Yuan.Head pose estimation fusing the second order HOG and CS-LBP[J].CAAI Transactions on Intelligent Systems,2015,10(5):741.[doi:10.11992/tis.201506019]

备注/Memo

备注/Memo:
收稿日期:2014-10-14;改回日期:。
基金项目:吉林省科技发展计划项目(20130206003SF).
作者简介:钱云,女,1972年生,副教授,主要研究方向为智能计算及应用。发表学术论文10余篇,其中被SCI检索2篇;梁艳春,男,1953年生,教授。主要研究方向为智能计算、文本挖掘、生物信息学。发表学术论文300余篇,其中被SCI检索100余篇;翟天放,男,1980年生,工程师,主要研究方向为水利信息化。
通讯作者:时小虎.E-mail:shixh@jlu.edu.cn.
更新日期/Last Update: 2015-11-16