[1]徐志通,骆炎民,柳培忠.联合加权重构轨迹与直方图熵的异常行为检测[J].智能系统学报,2018,13(6):1015-1026.[doi:10.11992/tis.201706070]
 XU Zhitong,LUO Yanmin,LIU Peizhong.Abnormal behavior detection of joint weighted reconstruction trajectory and histogram entropy[J].CAAI Transactions on Intelligent Systems,2018,13(6):1015-1026.[doi:10.11992/tis.201706070]
点击复制

联合加权重构轨迹与直方图熵的异常行为检测

参考文献/References:
[1] CALDERARA S, HEINEMANN U, PRATI A, et al. Detecting anomalies in people’s trajectories using spectral graph analysis[J]. Computer vision and image understanding, 2011, 115(8):1099-1111.
[2] LI Weixin, MAHADEVAN V, VASCONCELOS N. Anomaly detection and localization in crowded scenes[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(1):18-32.
[3] 孙倩茹, 王文敏, 刘宏. 视频序列的人体运动描述方法综述[J]. 智能系统学报, 2013, 8(3):189-198 SUN Qianru, WANG Wenmin, LIU Hong. Study of human action representation in video sequences[J]. CAAI transactions on intelligent systems, 2013, 8(3):189-198
[4] VIRENDRA, SHETE V, UKUNDE N. Intelligent embedded video monitoring system for home surveillance[C]//Proceedings of 2016 International Conference on Inventive Computation Technologies. Coimbatore, India, 2016:1-4.
[5] JIANG Fan, YUAN Junsong, TSAFTARIS S A, et al. Anomalous video event detection using spatiotemporal context[J]. Computer vision and image understanding, 2011, 115(3):323-333.
[6] BOUTTEFROY P L M, BOUZERDOUM A, PHUNG S L, et al. Abnormal behavior detection using a multi-modal stochastic learning approach[C]//Proceedings of 2008 International Conference on Intelligent Sensors, Sensor Networks and Information Processing. Sydney, Australia, 2008:121-126.
[7] ZHAO Bin, LI Feifei, XING E P. Online detection of unusual events in videos via dynamic sparse coding[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, 2011:3313-3320.
[8] LU Cewu, SHI Jianping, JIA Jiaya. Abnormal event detection at 150 FPS in MATLAB[C]//Proceedings of 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia, 2013:2720-2727.
[9] LI Ce, HAN Zhenjun, YE Qixiang, et al. Abnormal behavior detection via sparse reconstruction analysis of trajectory[C]//Proceedings of the 6th International Conference on Image and Graphics. Hefei, Anhui, China, 2011:807-810.
[10] 李海霞, 范红. 基于背景差法的几种背景建模方法的研究[J]. 工业控制计算机, 2012, 25(7):62-64 LI Haixia, FAN Hong. Research of several background modeling based on background subtraction[J]. Industrial control computer, 2012, 25(7):62-64
[11] GOYAL K, SINGHAI J. Review of background subtraction methods using Gaussian mixture model for video surveillance systems[J]. Artificial intelligence review, 2017.
[12] LI Yanshan, HUANG Qinghua, XIE Weixin, et al. A novel visual codebook model based on fuzzy geometry for large-scale image classification[J]. Pattern recognition, 2015, 48(10):3125-3134.
[13] 傅博, 李文辉, 陈博, 等. 基于加权光流能量的异常行为检测[J]. 吉林大学学报:工学版, 2013, 43(6):1644-1649 FU Bo, LI Wenhui, CHEN Bo, et al. Abnormal behavior detection based on weighted energy of optical flow[J]. Journal of Jilin university:engineering and technology edition, 2013, 43(6):1644-1649
[14] APEWOKIN S, VALENTINE B, FORSTHOEFEL D, et al. Embedded real-time surveillance using multimodal mean background modeling[M]//KISA?ANIN B, BHATTACHARYYA S S, CHAI S. Embedded Computer Vision. London, UK:Springer, 2009:163-175.
[15] 叶锋, 范曼曼, 郑子华, 等. 一种改进的基于平均背景模型的运动目标检测算法[J]. 福建师范大学学报:自然科学版, 2011, 27(4):44-49 YE Feng, FAN Manman, ZHENG Zihua, et al. An improvement of moving object detection algorithm based on average background model[J]. Journal of Fujian normal university:natural science edition, 2011, 27(4):44-49
[16] 李庆武, 蔡艳梅, 徐立中. 基于分块分类的智能视频监控背景更新算法[J]. 智能系统学报, 2010, 5(3):272-276 LI Qingwu, CAI Yanmei, XU Lizhong. Background update algorithm based on blocks classification for intelligent video surveillance[J]. CAAI transactions on intelligent systems, 2010, 5(3):272-276
[17] ZHANG Kaihua, ZHANG Lei, LIU Qingshan, et al. Fast visual tracking via dense Spatio-temporal context learning[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014:127-141.
[18] 汤春明, 卢永伟. 基于改进的稀疏重构算法的行人异常行为分析[J]. 计算机工程与应用, 2017, 53(8):165-169 TANG Chunming, LU Yongwei. Pedestrian abnormal behavior analysis based on optimized sparse reconstruction algorithm[J]. Computer engineering and applications, 2017, 53(8):165-169
[19] WANG Zhenhai, XU Bo. An effective object tracking based on spatio-temporal context learning and Hog[C]//Proceedings of the 201511th International Conference on Natural Computation. Zhangjiajie, China, 2015:661-664.
[20] LI Ce, HAN Zhenjun, YE Qixiang, et al. Visual abnormal behavior detection based on trajectory sparse reconstruction analysis[J]. Neurocomputing, 2013, 119:94-100.
[21] 杜鉴豪, 许力. 基于区域光流特征的异常行为检测[J]. 浙江大学学报:工学版, 2011, 45(7):1161-1166 DU Jianhao, XU Li. Abnormal behavior detection based on regional optical flow[J]. Journal of Zhejiang university:engineering science, 2011, 45(7):1161-1166
[22] FRANKLIN J. The elements of statistical learning:data mining, inference and prediction[J]. The mathematical intelligencer, 2005, 27(2):83-85.
[23] ISCEN A, WANG Yijie, DUYGULU P, et al. Snippet based trajectory statistics histograms for assistive technologies[C]//Proceedings of European Conference on Computer Vision. Zurich, Switzerland, 2014:3-16.
[24] 周同驰, 程旭, 吴镇扬. 分层树结构字典编码的行为识别[J]. 中国图象图形学报, 2014, 19(7):1054-1061 ZHOU Tongchi, CHENG Xu, WU Zhenyang. Action recognition using hierarchically tree-structured dictionary encoding[J]. Journal of image and graphics, 2014, 19(7):1054-1061
[25] SCHÖLKOPF B, PLATT J, HOFMANN T. Efficient sparse coding algorithms[C]//Proceedings of 2006 Conference on Advances in Neural Information Processing Systems.[s.l.]2007:801-808.
[26] CONG Yang, YUAN Junsong, LIU Ji. Sparse reconstruction cost for abnormal event detection[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA, 2011:3449-3456.
[27] 杨玉梅. 基于信息熵改进的K-means动态聚类算法[J]. 重庆邮电大学学报:自然科学版, 2016, 28(2):254-259 YANG Yumei. Improved K-means dynamic clustering algorithm based on information entropy[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2016, 28(2):254-259
[28] 刘燕, 高云. 利用角点历史信息的异常行为识别算法[J]. 计算机工程与科学, 2014, 36(6):1127-1131 LIU Yan, GAO Yun. Abnormal behavior recognition based on corner motion history[J]. Computer engineering and science, 2014, 36(6):1127-1131
[29] WANG Lijun, DONG Ming. Detection of abnormal human behavior using a matrix approximation-based approach[C]//Proceedings of the 201413th International Conference on Machine Learning and Applications. Detroit, MI, USA, 2014:324-329.
[30] 林玲, 廖德, 高阳, 等. 基于加权样本选择与主动学习的视频异常行为检测算法[J]. 模式识别与人工智能, 2016, 29(4):341-349 LIN Ling, LIAO De, GAO Yang, et al. Video anomaly detection algorithm based on weighted sample selection and active learning[J]. Pattern recognition and artificial intelligence, 2016, 29(4):341-349

备注/Memo

收稿日期:2017-06-22。
基金项目:国家自然科学基金项目(61605048);福建省自然科学基金项目(14BS215);泉州市科技计划项目(2015Z120).
作者简介:徐志通,男,1993年生,硕士研究生,主要研究方向为图像处理、计算机视觉、行人异常行为分析;骆炎民,男,1974年生,副教授,博士,日本筑波大学高级访问学者,主要研究方向为人工智能、机器学习、图像处理、数据挖掘。发表学术论文16篇,其中被SCI或EI检索9篇,主持及参与科研项目8项;柳培忠,男,1976年生,讲师,博士,美国杜克大学高级访问学者,主要研究方向为仿生智能计算、仿生图像处理技术、多维空间仿生信息学。主持及参与课题项目6项。发表学术论文15篇。
通讯作者:骆炎民.E-mail:lym@hqu.edu.cn

更新日期/Last Update: 2018-12-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134