[1]于立君,陈佳,刘繁明,等.改进粒子群算法的PID神经网络解耦控制[J].智能系统学报编辑部,2015,10(5):699-704.[doi:10.11992/tis.201406028]
 YU Lijun,CHEN Jia,LIU Fanming,et al.An improved particle swarm optimization forPID neural network decoupling control[J].CAAI Transactions on Intelligent Systems,2015,10(5):699-704.[doi:10.11992/tis.201406028]
点击复制

改进粒子群算法的PID神经网络解耦控制

参考文献/References:
[1] 孟祥振. 综合减摇系统参数配置及控制器优化研究[D]. 哈尔滨:哈尔滨工程大学, 2012:27-28. MENG Xiangzhen. The study of parameters configuration and controller optimization of integrated stabilization system[D]. Harbin:Harbin Engineering University, 2012:27-28.
[2] 周西峰, 林莹莹, 郭前岗. 基于粒子群算法的PID神经网络解耦控制[J]. 计算机技术与发展, 2013, 23(9):158-161.ZHOU Xifeng, LIN Yingying, GUO Qiangang. PID neural network decoupling control based on particle swarm optimization[J]. Computer Technology and Development, 2013, 23(9):158-161.
[3] MOHANDES M A. Modeling global solar radiation using particle swarm optimization (PSO)[J]. Solar Energy, 2012, 86(1):3137-3145.
[4] 应进. 基于粒子群算法的航空发动机多变量控制研究[D].南昌:南昌航空大学, 2011:23-24.YING Jin. Multivariable control for aeroengines based on particle swarm optimization algorithm[D]. Nanchang:Nanchang Hangkong University, 2011:23-24.
[5] AL-GEELANI N A, PIAH M A M, ADZIS Z, et al. Hybrid regrouping PSO based wavelet neuralnetworks for characterization of acoustic signalsdue to surface discharges on H.V.glass insulators[J]. Applied Soft Computing, 2013, 13(12):4622-4632.
[6] 胡建秀,曾建潮. 微粒群算法中惯性权重的调整策略[J]. 计算机工程, 2007, 33(11):193-195.HU Jianxiu,ZENG Jianchao.Selection on inertia weight of particle swarm optimization[J]. Computer Engineering, 2007, 33(11):193-195.
[7] 陈水利, 蔡国榕. PSO算法加速因子的非线性策略研究[J]. 长江大学学报(自然版):理工卷, 2007, 4(4):1-4.CHEN Shuili, CAI Guorong. Nonlinear strategy of PSO algorithm acceleration factor[J]. Journal of Yangtze University (Nat Sci Edit):Sci & Eng V, 2007, 4(4):1-4.
[8] ALIREZA A. PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems[J]. Acta Automatica Sinica, 2011, 37(5):541-549.
[9] 于立君, 孟祥振, 金宏章, 等. 综合减摇系统参数配置研究[J]. 中国造船, 2012, 53(4):13-21.YU Lijun, MENG Xiangzhen, JIN Hongzhang, et al. Study of configuration parameters of integrated stabilization system[J]. Shipbuilding of China, 2012, 53(4):13-21.
[10] 于立君, 孙经广, 刘繁明, 等. 广义预测算法在综合减摇系统控制器设计中的应用[J]. 船舶工程, 2013, 35(6):76-79, 83.YU Lijun, SUN Jingguang, LIU Fanming, et al. Application of generalized prediction algorithm in designing integrated stabilization system controller[J]. Ship Engineering, 2013, 35(6):76-79, 83.
[11] CHIOU J S, TSAI S H, LIU Mingtang. A PSO-based adaptive fuzzy PID-controllers[J]. Simulation Modelling Practice and Theory, 2012, 26:49-59.
[12] 沈锡.基于粒子群优化算法的船舶航向PID控制[D]. 大连:大连海事大学, 2011:6-7.SHEN Xi. PID control for ship steering based on particle swarm optimization[D]. Dalian:Dalian Maritime University, 2011:6-7.
[13] BOUALLÈGUE S, HAGGÈGE J, AYADI M, et al. PID-type fuzzy logic controller tuning based on particle swarm optimization[J]. Engineering Applications of Artificial Intelligence, 2012, 25(3):484-493.
[14] RATNAWEERA A, HAIGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Compution, 2004, 8(3):240-255.
[15] 乔俊飞, 逄泽芳, 韩红桂. 基于改进粒子群算法的污水处理过程神经网络优化控制[J]. 智能系统学报, 2012, 7(5):429-436.QIAO Junfei, PANG Zefang, HAN Honggui. Neural network optimal control for wastewater treatment process based on APSO[J]. CAAI Transactions on Intelligent Systems, 2012,7(5):429-436.
相似文献/References:
[1]刘 胜,宋 佳,李高云.PSO并行优化LSSVR非线性黑箱模型辨识[J].智能系统学报编辑部,2010,5(1):51.
 LIU Sheng,SONG Jia,LI Gao-yun.Modeling a complex nonlinear system with particle swarm optimizationand paralleloptimized least squares support vector regression[J].CAAI Transactions on Intelligent Systems,2010,5():51.
[2]唐小勇,于 飞,潘洪悦.改进粒子群算法的潜器导航规划[J].智能系统学报编辑部,2010,5(5):443.[doi:10.3969/j.issn.1673-4785.2010.05.011]
 TANG Xiao-yong,YU Fei,PAN Hong-yue.Submersible path-planning based on an improved PSO[J].CAAI Transactions on Intelligent Systems,2010,5():443.[doi:10.3969/j.issn.1673-4785.2010.05.011]
[3]沈继红,王侃.求解旅行商问题的混合粒子群优化算法[J].智能系统学报编辑部,2012,7(2):174.
 SHEN Jihong,WANG Kan.The light ray particle swarm optimization for solving the traveling salesman problem[J].CAAI Transactions on Intelligent Systems,2012,7():174.
[4]钱晓山,阳春华.基于GEP的最小二乘支持向量机模型参数选择[J].智能系统学报编辑部,2012,7(3):225.
 QIAN Xiaoshan,YANG Chunhua.A parameter selection method of a least squares support vector machine based on gene expression programming[J].CAAI Transactions on Intelligent Systems,2012,7():225.
[5]乔俊飞,逄泽芳,韩红桂.基于改进粒子群算法的污水处理过程神经网络优化控制[J].智能系统学报编辑部,2012,7(5):429.
 QIAO Junfei,PANG Zefang,HAN Honggui.Neural network optimal control for wastewater treatment processbased on APSO[J].CAAI Transactions on Intelligent Systems,2012,7():429.
[6]拓守恒,雍龙泉.一种用于PID控制的教与学优化算法[J].智能系统学报编辑部,2014,9(6):740.[doi:10.3969/j.issn.1673-4785.201304072]
 TUO Shouheng,YONG Longquan.A modified teaching-learning-based optimization algorithm for parameter tuning of a PID controller[J].CAAI Transactions on Intelligent Systems,2014,9():740.[doi:10.3969/j.issn.1673-4785.201304072]
[7]王辉,车超,于立君,等.鳍-水舱综合减摇混沌系统控制方法研究[J].智能系统学报编辑部,2017,12(3):318.[doi:10.11992/tis.201607012]
 WANG Hui,CHE Chao,YU Lijun,et al.Control method for a fin/tank integrated stabilization chaotic system[J].CAAI Transactions on Intelligent Systems,2017,12():318.[doi:10.11992/tis.201607012]
[8]翟俊海,刘博,张素芳.基于粗糙集相对分类信息熵和粒子群优化的特征选择方法[J].智能系统学报编辑部,2017,12(3):397.[doi:10.11992/tis.201705004]
 ZHAI Junhai,LIU Bo,ZHANG Sufang.A feature selection approach based on rough set relative classification information entropy and particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2017,12():397.[doi:10.11992/tis.201705004]
[9]徐鹏,谢广明,文家燕,等.事件驱动的强化学习多智能体编队控制[J].智能系统学报编辑部,2019,14(1):93.[doi:10.11992/tis.201807010]
 XU Peng,XIE Guangming,WEN Jiayan,et al.Event-triggered reinforcement learning formation control for multi-agent[J].CAAI Transactions on Intelligent Systems,2019,14():93.[doi:10.11992/tis.201807010]
[10]刘楠,刘福才,孟爱文.基于改进PSO和FCM的模糊辨识[J].智能系统学报编辑部,2019,14(2):378.[doi:10.11992/tis.201707025]
 LIU Nan,LIU Fucai,MENG Aiwen.Fuzzy identification based on improved PSO and FCM[J].CAAI Transactions on Intelligent Systems,2019,14():378.[doi:10.11992/tis.201707025]

备注/Memo

收稿日期:2014-06-17;改回日期:。
基金项目:中央高校自由探索计划资助项目(HEUCF041406).
作者简介:于立君,男,1975年生,副教授,博士,主要研究方向为船舶运动控制、先进控制理论及应用。主持并完成博士后基金1项、横向项目1项、中央高校自由探索计划5项,获得黑龙江省科技进步二等奖1项;陈佳,女,1989年生,硕士研究生,主要研究方向为船舶智能控制理论方法与应用;刘繁明,男,1963年生,教授,博士生导师,主要研究方向为水下潜器定位技术、弱信号测量与处理技术、被动导航与定位技术、工业装置测控技术。承担“十二五”预先研究项目2项,国家自然科学基金重点项目1项,设备研制项目多项。
通讯作者:于立君.E-mail:yulijun@hrbeu.edu.cn.

更新日期/Last Update: 2015-11-16
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134