字符串 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 后的引号不完整。 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 附近有语法错误。 一种改进人工势场的UUV动碍航物规避方法-《智能系统学报》

[1]王奎民,赵玉飞,侯恕萍,等.一种改进人工势场的UUV动碍航物规避方法[J].智能系统学报,2014,9(01):47-52.[doi:10.3969/j.issn.1673-4785.201309038]
 WANG Kuimin,ZHAO Yufei,HOU Shuping,et al.Dynamic obstacle avoidance for unmanned underwater vehiclebased on an improved artificial potential field[J].CAAI Transactions on Intelligent Systems,2014,9(01):47-52.[doi:10.3969/j.issn.1673-4785.201309038]
点击复制

一种改进人工势场的UUV动碍航物规避方法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年01期
页码:
47-52
栏目:
出版日期:
2014-02-25

文章信息/Info

Title:
Dynamic obstacle avoidance for unmanned underwater vehiclebased on an improved artificial potential field
作者:
王奎民1 赵玉飞2 侯恕萍3 孙海涛2
1. 海军驻锦州地区军代表室, 辽宁 锦州 121000;
2. 哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001;
3. 哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001
Author(s):
WANG Kuimin1 ZHAO Yufei2 HOU Shuping3 SUN Haitao2
1. Navy Military Representative Office in Jinzhou, Jinzhou 121000, China;
2. College of Automation, Harbin Engineering University, Harbin 150001, China;
3. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
UUV人工势场运动碍航物避障海流
Keywords:
UUVartificial potential fieldmoving obstacleobstacle avoidancesea-flow
分类号:
TP242.3;TJ6
DOI:
10.3969/j.issn.1673-4785.201309038
摘要:
针对无人水下航行器在复杂海洋环境下的动碍航物避障问题, 通过改进人工势场法提出一种动态规避方法。首先考虑到动碍航物的影响, 将与碍航物的遭遇时间添加到斥力势场函数中。然后将海流作用力添加到势场力中, 并利用所受合力完成路径规划。分别在定常流和涡流环境下, 设计避障仿真实验, 结果表明UUV成功地避开了碍航物, 验证了方法的可行性。
Abstract:
To solve the problem of moving obstacles avoidance for the UUV in complex ocean environments, a dynamic obstacle avoidance method based on an improved artificial potential field is proposed. Considering the effects of moving obstacles, the time of the collision with the obstacle is taken into the repulsive potential function. Then, the force of sea-flow is added into the improved potential force and path planning is carried out by using the resultant force. The obstacle avoidance simulations are carried out in constant sea-flow and vortex sea-flow respectively. The results show that the UUV can avoid the obstacles successfully and the effectiveness of the proposed method is verified.

参考文献/References:

[1] 张殿富,刘福.基于人工势场法的路径规划方法研究及展望[J].计算机工程与科学, 2013, 35(6): 88-95.ZHANG Dianfu, LIU Fu. Research and development trend of path planning based on artificial potential field method[J]. Computer Engineering & Science, 2013, 35(6): 88-95.
[2] KOREN Y, BORENSTEIN J. Potential field methods and their inherent limitations for mobile robot navigation[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Sacramento, USA, 1991: 1398-1404.
[3] YAN Yongjie, ZHANG Yan. Collision avoidance planning in multi-robot based on improved artificial potential field and rules[C]//2008 IEEE International Conference on Robotics and Biomimetics. Bangkok, Thailand, 2009: 1026-1031.
[4] 王芳,万磊,徐玉如,等.基于改进人工势场的水下机器人路径规划[J].华中科技大学学报:自然科学版, 2011, 39(S2): 184-187.WANG Fang, WAN Lei, XU Yuru, et al. Path planning based on improved artificial potential field for autonomous underwater vehicles[J]. Journal of Huazhong University of Science & Technology: Natural Science Edition, 2011, 39(S2): 184-187.
[5] 焦鹏,王宏健,丁福光.基于虚拟势场理论的AUV局部路径规划方法[J].中国造船, 2007, 48(1): 76-81.JIAO Peng, WANG Hongjian, DING Fuguang. Local path planning method for autonomous underwater vehicle based on virtual field force[J]. Shipbuilding of China, 2007, 48(1): 76-81.
[6] 薛源,严卫生,高剑,等.基于人工矢量场的AUV自主回收路径规划[J].鱼雷技术, 2011, 19(2): 104-108.XUE Yuan, YAN Weisheng, GAO Jian, et al. A path planning method based on artificial vector field for autonomous recovery of AUV[J]. Torpedo Technology, 2011, 19(2): 104-108.
[7] 李欣,朱大奇.基于人工势场法的自治水下机器人路径规划[J].上海海事大学学报, 2010, 31(2): 35-39.LI Xin, ZHU Daqi. Path planning for autonomous underwa-ter vehicle based on artificial potential field method[J]. Journal of Shanghai Maritime University, 2010, 31(2): 35-39.
[8] GE S S, CUI Y J. New potential functions for mobile robot path planning[J]. IEEE Transactions on Robotics and Automation, 2000, 16(5): 615-620.
[9] KON Y, LEE B H. Avoidability measure in moving obstacle avoidance problem and its use for robot motion planning[C]//IEEE/RSJ International Conference on Intelligent Robots and System. Osaka, Japan, 1996: 1296-1303.
[10] GE S S, CUI Y J. Dynamic motion planning for mobile robots using potential field method[J]. Autonomous Robots, 2002, 13(3): 207-222.
[11] 曹璟.复杂环境下AUV路径规划方法研究[D].青岛:中国海洋大学, 2011: 19-22.CAO Jing. Research on the AUV path planning method in complex environment[D]. Qingdao: Ocean University of China, 2011: 19-22.
[12] LATOMBE J. Robot motion planning[M]. Norwell, USA: Kluwer, 1991.

相似文献/References:

[1]黄彦文,曹其新.RoboCup比赛环境下足球机器人路径规划研究[J].智能系统学报,2007,2(04):52.
 HUANG Yan-wen,CAO Qin-xin.Path planning for robot soccer in the RoboCup environment[J].CAAI Transactions on Intelligent Systems,2007,2(01):52.
[2]黎南,湛鑫,陈涛,等.UUV水下回收中的视觉和短基线定位融合[J].智能系统学报,2013,8(02):156.[doi:10.3969/j.issn.1673-4785.201301020]
 LI Nan,ZHAN Xin,CHEN Tao,et al.Data fusion method of vision and SBL position for UUV underwater docking[J].CAAI Transactions on Intelligent Systems,2013,8(01):156.[doi:10.3969/j.issn.1673-4785.201301020]
[3]黄维,田彦涛,樊泽华,等.自主车辆安全系数估计与T形路口避碰规划[J].智能系统学报,2013,8(05):408.[doi:10.3969/j.issn.1673-4785.201301021]
 HUANG Wei,TIAN Yantao,FAN Zehua,et al.Estimation of the safety coefficient of autonomous vehicles and collision avoidance planning at the T-shape intersection[J].CAAI Transactions on Intelligent Systems,2013,8(01):408.[doi:10.3969/j.issn.1673-4785.201301021]
[4]贺超,刘华平,孙富春,等.采用Kinect的移动机器人目标跟踪与避障[J].智能系统学报,2013,8(05):426.[doi:10.3969/j.issn.1673-4785.201301028]
 HE Chao,LIU Huaping,SUN Fuchun,et al.Target tracking and obstacle avoidance of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2013,8(01):426.[doi:10.3969/j.issn.1673-4785.201301028]
[5]王文彬,秦小林,张力戈,等.基于滚动时域的无人机动态航迹规划[J].智能系统学报,2018,13(04):524.[doi:10.11992/tis.201708031]
 WANG Wenbin,QIN Xiaolin,ZHANG Lige,et al.Dynamic UAV trajectory planning based on receding horizon[J].CAAI Transactions on Intelligent Systems,2018,13(01):524.[doi:10.11992/tis.201708031]

备注/Memo

备注/Memo:
收稿日期:2013-09-11。
基金项目:国家自然科学基金资助项目(51109043).
作者简介:王奎民,男,1971年生,高级工程师,博士,主要研究方向为水下航行器的控制与仿真;侯恕萍,女,1972年生,副教授,博士,主要研究方向为水下特种作业技术与装备、水下机器人智能控制与对接技术,发表学术论文20余篇。
通讯作者:赵玉飞,男,1986年生,博士研究生,主要研究方向为水下航行器的自主控制.E-mail:zhaoyufei431@163.com.
更新日期/Last Update: 1900-01-01