[1]赵森烽,赵克勤.频率型联系概率与随机事件转化定理[J].智能系统学报,2014,9(01):53-59.[doi:10.3969/j.issn.1673-4785.201305003]
 ZHAO Senfeng,ZHAO Keqin.Frequency-type contact probability and random events transformation theorem[J].CAAI Transactions on Intelligent Systems,2014,9(01):53-59.[doi:10.3969/j.issn.1673-4785.201305003]
点击复制

频率型联系概率与随机事件转化定理(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年01期
页码:
53-59
栏目:
出版日期:
2014-02-25

文章信息/Info

Title:
Frequency-type contact probability and random events transformation theorem
作者:
赵森烽1 赵克勤23
1. 浙江工业大学之江学院 理学系, 浙江 杭州 310024;
2. 诸暨市联系数学研究所, 浙江 诸暨 311811;
3. 浙江大学 非传统安全与和平发展研究中心, 浙江 杭州 310058
Author(s):
ZHAO Senfeng1 ZHAO Keqin23
1. Department of Science, Zhijiang College, Zhejiang University of Technology, Hangzhou 310024, China;
2. Zhuji Institute of Connection Mathematics, Zhuji 311811, China;
3. Center for Non-traditional Security and Peaceful Development Studies, Zhejiang University, Hangzhou 310058, China
关键词:
随机试验频率型概率联系概率转化定理小概率原理大概率原理同异反概率多元联系概率
Keywords:
random testfrequency type probabilitycontact probabilitytransformation theoremsmall probability principlebig probability principlesame-indefinite-contrary connection probabilitymultiple contact probability
分类号:
TP18
DOI:
10.3969/j.issn.1673-4785.201305003
摘要:
为进一步研究联系概率与概率的关系, 借助一种新的"掷硬币"和"掷骰子"随机试验, 导出频率型概率的联系概率。在此基础上给出随机事件的"转化定理"与"大概率原理", 并讨论其与"小概率原理"的关系。以"掷骰子"为例给出同异反联系概率和多元联系概率的定义, 说明频率型联系概率与古典概型、几何概型的联系概率具有同样的数学形式和性质, 实例表明联系概率客观地反映了随机试验结果。
Abstract:
In order to further research the relation between contact probability and probability, with the aid of a new random test of "tossing a coin" and "rolling the dice", the frequency-type contact probability is derived, and on this basis, the transformation theorem of random events and the "big probability principle" are proposed and its relation with the "small probability principle" is discussed. Taking the game of "rolling the dice" as an example, the definitions of the same-indefinite-contrary connection probability and the multiple contact probability are given, showing that the frequency type contact probability has the same mathematical form and nature with the classical type and geometrical type contact probability. The examples show the contact probability reflects the result of the random test objectively.

参考文献/References:

[1] 赵克勤.集对分析及其初步应用[M].杭州:浙江科技出版社, 2000: 44-64.
[2] 赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报, 2006, 1(2): 16-25.ZHAO Keqin. The application of uncertainty systems theory of set pair analysis (SPA) in the artificial intelligence[J]. CAAI Transactions on Intelligent Systems, 2006, 1(2): 16-25.
[3] 赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报, 2008, 3(6): 476-486.ZHAO Keqin. The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J]. CAAI Transactions on Intelligent Systems, 2008, 3(6):476-486.
[4] 赵森烽,赵克勤.概率联系数化的原理与联系概率在概率推理中的应用[J].智能系统学报, 2012, 7(3): 200-205.ZHAO Senfeng, ZHAO Keqin. The principle of the probability of connection number and application in probabilistic reasoning[J]. CAAI Transactions on Intelligent Systems, 2012, 7(3): 200-205.
[5] 赵森烽,赵克勤.联系概率的由来及其在风险决策中的应用[J].数学的实践与认识, 2013, 43(4): 165-171.ZHAO Senfeng, ZHAO Keqin. The contact probability in risk decision-making medium application[J]. Mathematics in Practice and Theory, 2013, 43(4): 165-171.
[6] 赵森烽,赵克勤.几何型概率的联系概率(复概率)和概率的补数定理[J].智能系统学报, 2013, 8(1): 11-15.ZHAO Senfeng, ZHAO Keqin. Contact probability (complex probability) of geometry probability and probability of the complement number theorem[J]. CAAI Transactions on Intelligent Systems, 2013, 8(1): 11-15.
[7] 茆诗松,程依明,濮晓龙.概率论与数理统计教程[M].北京:高等教育出版社, 2012: 15-17.
[8] 王梓坤.概率论基础及其应用[M].北京:科学出版社, 1979: 218-219.
[9] 赵秀恒,米立民.概率论与数理统计[M].北京:高等教育出版社, 2008: 1-28.
[10] 赵克勤.基于集对分析的不确定性多属性决策模型与算法[J].智能系统学报, 2010, 5(1): 41-50.ZHAO Keqin. Decision making algorithm based on set pair analysis for use when facing multiple uncertain attributes[J]. CAAI Transactions on Intelligent Systems, 2010, 5(1): 41-50.
[11] 刘秀梅,赵克勤.基于联系数的不确定空情意图识别[J].智能系统学报, 2012, 7(5): 450-456.LIU Xiumei, ZHAO Keqin. Inference method on intention with uncertain aerial information based on the connection number[J]. CAAI Transactions on Intelligent Systems, 2012, 7(5): 450-456.
[12] 赵克勤.集对分析的同异反系统理论及其在人工智能中的应用[J].智能系统学报, 2007, 2(5): 476-486.ZHAO Keqin. The application of SPA based identical discrepancy contrary system theory in artificial intelligence research[J]. CAAI Transactions on Intelligent Systems, 2007, 2(5): 476-486.
[13] 闫书亚,殷明浩,谷文祥,等.概率规划的研究与发展[J].智能系统学报, 2008, 3(1): 9-22.YAN Shuya, YIN Minghao, GU Wenxiang, et al. Research and advances in probabilistic planning[J]. CAAI Transactions on Intelligent Systems, 2008, 3(1): 9-22.
[14] 李德毅.网络时代人工智能研究与发展[J].智能系统学报, 2009, 4(1): 1-6.LI Deyi. AI research and development in the network age[J]. CAAI Transactions on Intelligent Systems, 2009, 4(1): 1-6.
[15] 蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社, 2010: 114-116.
[16] 谢安,李冬红.概率论与数理统计[M].北京:清华大学出版社, 2012: 7-15.

相似文献/References:

[1]赵森烽,赵克勤.几何概型的联系概率(复概率)与概率的补数定理[J].智能系统学报,2013,8(01):11.[doi:10.3969/j.issn.1673-4785.201208025]
 ZHAO Senfeng,ZHAO Keqin.Contact probability (complex probability) of the geometry probability and the complement number theorem of probability[J].CAAI Transactions on Intelligent Systems,2013,8(01):11.[doi:10.3969/j.issn.1673-4785.201208025]

备注/Memo

备注/Memo:
收稿日期:2013-05-03。
基金项目:国家社会科学基金重点资助项目(08ASH006);教育部哲学社会科学研究重大课题攻关项目(08JZD0021-D).
作者简介:赵森烽,男,1993年生,主要研究方向为信息与计算、概率论、集对分析联系数学等,发表学术论文3篇。
通讯作者:赵克勤,男,1950年生,研究员,中国人工智能学会理事、人工智能基础专业委员会副主任、集对分析联系数学专业筹备委员会主任。主要研究方向为联系数学,1989年提出集对分析(联系数学),发表学术论文90余篇,出版专著1部.E-mail:zjzhaok@sohu.com.
更新日期/Last Update: 1900-01-01