[1]谢朝霞,穆志纯,谢建军.基于LLE的多姿态人耳识别[J].智能系统学报,2008,3(04):321-327.
 XIE Zhao-xia,MU Zhi-chun,XIE J ian-jun.Multi-pose ear recogn ition based on locally linear embedding[J].CAAI Transactions on Intelligent Systems,2008,3(04):321-327.
点击复制

基于LLE的多姿态人耳识别(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第3卷
期数:
2008年04期
页码:
321-327
栏目:
出版日期:
2008-08-25

文章信息/Info

Title:
Multi-pose ear recogn ition based on locally linear embedding
文章编号:
1673-4785 (2008) 04-0321-07
作者:
谢朝霞1 穆志纯1 谢建军2
1. 北京科技大学信息工程学院,北京100083;
2. 河南科技大学机电工程学院,河南洛阳471003
Author(s):
XIE Zhao-xia1 MU Zhi-chun1 XIE J ian-jun2
1. School of Information Engineering, University of Science and TechnologyBeijing, Beijing 100083, China;
2. School ofMechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China
关键词:
多姿态人耳识别流形学习局部线性嵌入姿态变化
Keywords:
multi-pose ear recognition manifold learning LLE pose variation
分类号:
TP181; TP391
文献标志码:
A
摘要:
多姿态人耳识别是人耳识别技术面临的一个难题,目前这方面的研究并不多见. 通过分析国内外22D人耳识别方法在解决姿态问题时存在的不足,引入流形学习算法,提出一种基于局部线性嵌入的多姿态人耳识别方法. 实验结果表明,这种方法在人耳姿态变化时能够取得非常理想的识别率,提高了人耳识别的鲁棒性,增强了人耳识别技术的实用性.
Abstract:
Multi2pose ear recognition is a challenging p roblem in ear recognition technology, and it has not received sufficient attention. In this paper, on the basis of the manifold learning algorithm, we p ropose a multi2pose ear rec2 ognition method based on LLE ( locally linear embedding ) that overcomes the disadvantages of 22D ear recognition methods in dealing with pose variations. Experimental results show that thismethod can obtain a satisfactorily high recognition rate, imp roving the robustness of ear recognition, and enhancing the p racticability of ear recognition technology

参考文献/References:

[ 1 ]穆志纯,席德春,徐正光,袁 立. 外耳形状特征和内耳结构特征结合的人耳特征提取[ J ]. 北京科技大学学报, 2006, 28 (5) : 4972500.
MU Zhichun, XIDechun, XU Zhengguang, YUAN L i. Ear feature extraction combining the shape feature of outer ear with the structure feature of inner ear[ J ]. Journal ofUniver2 sity of Science and Technology Beijing, 2006, 28 (5) : 4972 500.
 [ 2 ] IANNARELL IA. Ear identification [M ]. Fremont: Para2 mount Publishing Company, 1989.
[ 3 ]MORENO B, A#NCHEZ # , V*LEZ J. Use outer ear ima2 ges for personal identification in security app lications[C ] / / Proceedings of IEEE 33 rd Annual International Carnahan Conference on Security Technology. Madrid, Spain, 1999.
[ 4 ]BURGEM, BURGEW. Ear biometrics in computer vision [C ] / /Proceedings of the 15 th International Conference of Pattern Recognition. Barcelona, Spain, 2000.
[ 5 ] HURLEY J , N IXON M, CARTER N. Force field energy functions for image feature extraction[ J ]. Image and Vision Computing, 2002, 20 (526) : 3112317.
[ 6 ] HURLEY D, N IXON M, CARTER J. A new force field transform for ear and face recognition[ C ] / / Proceedings of the IEEE International Conference on Image Processing. Vancover, Canada, 2000.
[ 7 ]刘炜杰. 外耳图像识别研究[M ]. 北京:北京科技大学出版社, 2002.
 [ 8 ] CHANG K, BOWYER K W, SARKAR S, V ICTOR B. Comparison and combination of ear and face images in ap2 pearance2based biometrics [ J ]. IEEE Transactions on Pat2 tern Analysis and Machine Intelligence, 2003, 25 ( 9 ) : 116021166.
 [ 9 ]王忠礼,穆志纯. 基于不变矩的人耳识别[ J ]. 模式识别与人工智能, 2004, 17 (4) : 5022505.
WANG Zhongli, MU Zhichun. Ear recognition based on mo2 ment invariants[ J ]. Pattern Recognition and Artificial Intel2 ligence, 2004, 17 (4) : 5022505.
[ 10 ] ZHANG Haijun, MU Zhichun, QU Wei, L IU Leiming, ZHANG Chengyang. A novel app roach for ear recognition based on ICA and RBF network [ C ] / / Proceedings of 2005 International Conference on Machine Learning and Cybernetics. Guangzhou, China, 2005.
[ 11 ]袁 立. 人耳识别中若干关键问题的研究[D ]. 北京:北京科技大学, 2006.
YUAN L i. Study on some key issues in ear recognition [D ]. Beijing: University of Science and Technology Bei2 jing, 2006.
 [ 12 ]LU H M, FA INMAN Y, ROBERT H N. Image manifolds [C ] / /Proceedings of SP IE. San Jose, CA, USA, 1998.
 [ 13 ] SEUNG H S, DAN IEL D L. The manifold ways of percep2 tion[ J ]. Science, 2000, 290: 226822269.
 [ 14 ]王 珏,周志华,周傲英. 机器学习及其应用[M ]. 北京:清华大学出版社, 2006.
 [ 15 ]ROWEIS S T, SAUL L K. Nonlinear dimensionality reduc2 tion by locally linear embedding[ J ]. Science, 2000, 290: 232322326.
 [ 16 ] SAUL L K, ROWE IS S T. Think globally, fit locally: un2 supervised learning of low dimensionalmanifolds[ J ]. Jour2 nal of Machine Learning Research, 2003, 4 ( 2 ) : 1192 155.
 [ 17 ]D ICK D R, ROBERT PW D. Locally linear embedding for classification[D ]. Delft: Delft University of Technology, 2002.
[ 18 ]OLGA K, OLEG O, MATTI P. Selection of the op timal parameter value for the locally linear embedding algorithm [C ] / /Proceedings of the 1 st International Conference on Fuzzy Systems and Knowledge Discovery. Singapore, 2002.

相似文献/References:

[1]徐 蓉,姜 峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(01):44.
 XU Rong,JIANG Feng,YAO Hong-xun.Overview of manifold learning[J].CAAI Transactions on Intelligent Systems,2006,1(04):44.
[2]文贵华,江丽君,文 军.局部测地距离估计的Hessian局部线性嵌入[J].智能系统学报,2008,3(05):429.
 WEN Gui-hua,J IANG L i-jun,WEN Jun.Using locally estimated geodesic distances to improve Hessian local linear embedding[J].CAAI Transactions on Intelligent Systems,2008,3(04):429.
[3]刘 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(03):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4(04):199.
[4]谈超,关佶红,周水庚.增量与演化流形学习综述[J].智能系统学报,2012,7(05):377.
 TAN Chao,GUAN Jihong,ZHOU Shuigeng.Incremental and evolutionary manifold learning: a survey[J].CAAI Transactions on Intelligent Systems,2012,7(04):377.
[5]练浩,曾宪华,李淑芳.有监督全局流形排序的图像检索算法[J].智能系统学报,2014,9(01):92.[doi:10.3969/j.issn.1673-4785.201303021]
 LIAN Hao,ZENG Xianhua,LI Shufang.Supervised global manifold ranking based image retrieval algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(04):92.[doi:10.3969/j.issn.1673-4785.201303021]
[6]张钢,谢晓珊,黄英,等.面向大数据流的半监督在线多核学习算法[J].智能系统学报,2014,9(03):355.[doi:10.3969/j.issn.1673-4785.201403067]
 ZHANG Gang,XIE Xiaoshan,HUANG Ying,et al.An online multi-kernel learning algorithm for big data[J].CAAI Transactions on Intelligent Systems,2014,9(04):355.[doi:10.3969/j.issn.1673-4785.201403067]
[7]程旸,王士同.基于局部保留投影的多可选聚类发掘算法[J].智能系统学报,2016,11(5):600.[doi:10.11992/tis.201508022]
 CHENG Yang,WANG Shitong.A multiple alternative clusterings mining algorithm using locality preserving projections[J].CAAI Transactions on Intelligent Systems,2016,11(04):600.[doi:10.11992/tis.201508022]
[8]徐慧敏,陈秀宏.图正则化稀疏判别非负矩阵分解[J].智能系统学报,2019,14(06):1217.[doi:10.11992/tis.201811021]
 XU Huimin,CHEN Xiuhong.Graph-regularized, sparse discriminant, non-negative matrix factorization[J].CAAI Transactions on Intelligent Systems,2019,14(04):1217.[doi:10.11992/tis.201811021]

备注/Memo

备注/Memo:
收稿日期: 2008-03-19.
基金项目:国家自然科学基金资助项目( 60375002, 60573058) ;北京市教委重点学科共建项目(XK100080537)
作者简介:
谢朝霞, 女, 1977 年生, 博士研究生,主要研究方向为计算机视觉、生物特征识别、模式识别与图像处理.
穆志纯,男, 1952年生,教授,博士生导师,主要研究方向为模式识别、过程控制、人工智能及其应用. 曾获部级科技进步二等奖1项、三等奖2项主持重大横向课题5 项,发表学术论文30 余篇.
谢建军,男, 1972年生,助教,主要研究方向为机械制造及其自动化等.
通信作者:谢朝霞. E2mail: xiezhaox@163. com.
更新日期/Last Update: 2009-05-18