[1]陈立潮,闫耀东,张睿,等.融合迁移学习的AlexNet神经网络不锈钢焊缝缺陷分类[J].智能系统学报,2021,16(3):537-543.[doi:10.11992/tis.202005013]
 CHEN Lichao,YAN Yaodong,ZHANG Rui,et al.Welding defect classification of stainless steel based on AlexNet neural network combined with transfer learning[J].CAAI Transactions on Intelligent Systems,2021,16(3):537-543.[doi:10.11992/tis.202005013]
点击复制

融合迁移学习的AlexNet神经网络不锈钢焊缝缺陷分类

参考文献/References:
[1] MUNIR N, KIM H J, PARK J, et al. Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions[J]. Ultrasonics, 2019, 94:74-81.
[2] 蔡晓龙. 基于支持向量机的焊缝缺陷建模及其识别算法研究[D]. 西安:西安石油大学, 2014:1-75.
CAI Xiaolong. Welding defects modeling and recognition algorithm reasearching based on Support Vector Machine[D]. Xi’an:Xi’an Shiyou University, 2014:1-75.
[3] FAN Junfeng, JING Fengshui, FANG Zaojun, et al. Automatic recognition system of welding seam type based on SVM method[J]. The international journal of advanced manufacturing technology, 2017, 92(1/2/3/4):989-999.
[4] CHEN Yuan, MA Hongwei, DONG Ming. Automatic classification of welding defects from ultrasonic signals using an SVM-based RBF neural network approach[J]. Insight-non-destructive testing and condition monitoring, 2018, 60(4):194-199.
[5] 刘梦溪, 巨永锋, 高炜欣, 等. 焊缝缺陷图像分类识别的深度置信网络研究[J]. 测控技术, 2018, 37(8):5-9, 15
LIU Mengxi, JU Yongfeng, GAO Weixin, et al. Research on deep belief network for images classification and recognition of weld defects[J]. Measurement & control technology, 2018, 37(8):5-9, 15
[6] WANG Xiaokai, GUAN Shanyue, HUA Lin, et al. Classification of spot-welded joint strength using ultrasonic signal time-frequency features and PSO-SVM method[J]. Ultrasonics, 2019, 91:161-169.
[7] 侯怀书, 任慧霞. 金属管道对接焊缝超声检测缺陷类型识别研究[J]. 热加工工艺, 2019, 48(21):143-146, 152
HOU Huaishu, REN Huixia. Research on defect type recognition of metal pipeline butt weld by ultrasound detection[J]. Hot working technology, 2019, 48(21):143-146, 152
[8] WAIBEL A. Modular construction of time-delay neural networks for speech recognition[J]. Neuralcomput, 1989, 1:39-46.
[9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[10] 刘思洋, 黄坚, 刘桂雄, 等. AlexNet两光照下多类别法定货币识别技术[J]. 中国测试, 2019, 45(9):118-122
LIU Siyang, HUANG Jian, LIU Guixiong, et al. Technology of multi-category legal currency identification under multi-light conditions based on AlexNet[J]. China measurement & test, 2019, 45(9):118-122
[11] 张根保, 李浩, 冉琰, 等. 一种用于轴承故障诊断的迁移学习模型[J]. 吉林大学学报(工学版), 2020, 50(5):1617-1626
ZHANG Genbao, LI Hao, RAN Yan, et al. A transfer learning model for bearing fault diagnosis[J]. Journal of Jilin University (engineering and technology edition), 2020, 50(5):1617-1626
[12] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shif[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France, 2015:448-456.
[13] JIANG Xianwei, CHANG Liang, ZHANG Yudong. Classification of alzheimer’s disease via eight-layer convolutional neural network with batch normalization and dropout techniques[J]. Journal of medical imaging and health informatics, 2020, 10(5):1040-1048.
[14] 陈波, 张华, 王姮, 等. 基于迁移学习的坝面表观缺陷智能检测方法研究[J]. 水利水电技术, 2020, 51(4):106-112
CHEN Bo, ZHANG Hua, WANG Heng, et al. Transfer learning-based study on method of intelligent detection of dam surface apparent defect[J]. Water resources and hydropower engineering, 2020, 51(4):106-112
[15] 龚震霆, 陈光喜, 曹建收. 卷积神经网络在脑脊液图像分类上的应用[J]. 计算机工程与设计, 2017, 38(4):1056-1061
GONG Zhenting, CHEN Guangxi, CAO Jianshou. Cerebrospinal fluid images classification based on convolution neural network[J]. Computer engineering and design, 2017, 38(4):1056-1061
[16] 戎辉, 华一丁, 张小俊, 等. 基于迁移学习和AlexNet的驾驶员行为状态识别方法[J]. 科学技术与工程, 2019, 19(28):208-216
RONG Hui, HUA Yiding, ZHANG Xiaojun, et al. Driver behavior recognition method based on migration learning and AlexNet[J]. Science technology and engineering, 2019, 19(28):208-216
[17] 周奇才, 刘星辰, 赵炯, 等. 旋转机械一维深度卷积神经网络故障诊断研究[J]. 振动与冲击, 2018, 37(23):31-37
ZHOU Qicai, LIU Xingchen, ZHAO Jiong, et al. Fault diagnosis for rotating machinery based on 1D depth convolutional neural network[J]. Journal of vibration and shock, 2018, 37(23):31-37
[18] 张安安, 黄晋英, 冀树伟, 等. 基于卷积神经网络图像分类的轴承故障模式识别[J]. 振动与冲击, 2020, 39(4):165-171
ZHANG An’an, HUANG Jinying, JI Shuwei, et al. Bearing fault pattern recognition based on image classification with CNN[J]. Journal of vibration and shock, 2020, 39(4):165-171
[19] 白林, 魏昕, 刘禹, 等. 基于VGG模型的岩石薄片图像识别[J]. 地质通报, 2019, 38(12):2053-2058
BAI Lin, WEI Xin, LIU Yu, et al. Rock thin section image recognition and classification based on VGG model[J]. Geological bulletin of China, 2019, 38(12):2053-2058
[20] 詹翔, 张婷, 林聪, 等. 基于深度学习的乳腺病理图像分类实验方法[J]. 计算机应用, 2019, 39(S2):118-121
ZHAN Xiang, ZHANG Ting, LIN Cong, et al. Classification method of breast pathological images based on deep learning[J]. Journal of computer applications, 2019, 39(S2):118-121
相似文献/References:
[1]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[2]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[3]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[4]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[5]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[6]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[7]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[8]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[9]王成济,罗志明,钟准,等.一种多层特征融合的人脸检测方法[J].智能系统学报,2018,13(1):138.[doi:10.11992/tis.201707018]
 WANG Chengji,LUO Zhiming,ZHONG Zhun,et al.Face detection method fusing multi-layer features[J].CAAI Transactions on Intelligent Systems,2018,13():138.[doi:10.11992/tis.201707018]
[10]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]

备注/Memo

收稿日期:2020-05-10。
基金项目:先进控制与装备智能化山西省重点实验室开放课题(ACEI202002);山西省高等学校科技创新项目(2019L0653);山西省应用基础研究项目(201801D221179)
作者简介:陈立潮,教授,博士,主要研究方向为人工智能、图像信息处理。主持山西省自然科学基金等项目12项。发表学术论文180余篇;闫耀东,硕士研究生,主要研究方向为图像信息处理;张睿,副教授,博士,主要研究方向为智能信息处理。主持山西省应用基础研究等项目5项。发表学术论文10余篇
通讯作者:张睿.E-mail:zhangrui@tyust.edu.cn

更新日期/Last Update: 2021-06-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134