GAN Yu,WU Yu,WANG Jianyong.Epidemics trend prediction model of COVID-19[J].CAAI Transactions on Intelligent Systems,2021,16(3):528-536.[doi:10.11992/tis.202008037]





Epidemics trend prediction model of COVID-19
甘雨 吴雨 王建勇
四川大学 计算机学院,四川 成都 610065
GAN Yu WU Yu WANG Jianyong
College of Computer Science, Sichuan University, Chengdu 610065, China
COVID-19SEIR modelLSTMintelligent systemsprediction modelreal time predictionneural networksdeep learning
2019年新型冠状病毒肺炎(corona virus disease 2019,COVID-19)的爆发对人们的健康和生活造成了极大的危害和影响。预测疫情的发展趋势可帮助人们提前制定应对措施。SEIR模型是经典的传染病模型之一,由于该模型中病毒传染率为常数,难以对新冠肺炎传播情况进行准确建模并完成疫情趋势预测。针对此问题,本文提出基于长短期记忆网络(long short-term memory,LSTM)的病毒传染率预测方法,并将其与SEIR模型结合,建立新冠肺炎疫情趋势预测模型(LSTM-SEIR network, LS-Net)。为了验证本文提出的方法,收集了国内多个省市官方公布的疫情数据进行实验。实验结果表明,本文提出的LS-Net可对疫情发展趋势进行有效预测,并优于传统SEIR模型。
The outbreak of coronavirus disease 2019 (COVID-19) has threatened and brought a serious impact on the health and daily life of people. If people are warned beforehand about the speed of the disease, they are able to take necessary preventive measures. As one of the most classical epidemic models, the SEIR model can hardly model the spread of COVID-19 and predict its trend because the rate of transmission is constant, which is one of the required parameters of the SEIR model. Aiming at this problem, a dynamic prediction method of the rate of transmission is derived based on long short-term memory (LSTM). An LSTM-SEIR network (LS-Net) is then proposed based on the LSTM and SEIR models to predict the trend of the COVID-19 epidemic. To validate the LS-Net, official epidemiological data released from different domestic areas are collected. The experimental results show that LS-Net can predict the spread of COVID-19 validly and with better performance compared with that of the traditional SEIR model.


[1] IMAI N, CORI A, DORIGATTI I, et al. Transmissibility of 2019-nCoV[EB/OL].(2020?01?25)[2020?07?30] https://spiral.imperial.ac.uk:8443/handle/10044/1/77148.
[2] READ J M, BRIDGEN J R E, CUMMINGS D A T, et al. Novel coronavirus 2019-nCoV:early estimation of epidemiological parameters and epidemic predictions[EB/OL]. (2020?01?28)[2020?07?28] https://www.medrxiv.org/CONTENT/10.1101/2020.01.23.20018549V2.
[3] SHEN Mingwang, PENG Zhihang, XIAO Yanni, et al. Modeling the epidemic trend of the 2019 novel coronavirus outbreak in China[J]. The innovation, 2020, 1(3):100048.
[4] HARKO T, LOBO F S N, MAK M K. Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates[J]. Applied mathematics and computation, 2014, 236:184-194.
[5] KR?GER M, SCHLICKEISER R. Analytical solution of the SIR-model for the temporal evolution of epidemics. Part A:time-independent reproduction factor[J]. Journal of pysics A, 2020(50):505601.
[6] LI M Y, MULDOWNEY J S. Global stability for the SEIR model in epidemiology[J]. Mathematical biosciences, 1995, 125(2):155-164.
[7] GODIO A, PACE F, VERGNANO A. SEIR modeling of the Italian epidemic of SARS-CoV-2 using computational swarm intelligence[J]. International journal of environmental research and public health, 2020, 17(10):3535.
[8] WU J T, LEUNG K, LEUNG G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China:a modelling study[J]. The lancet, 2020, 395(10225):689-697.
[9] YANG Zifeng, ZENG Zhiqi, WANG Ke, et al. Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J]. Journal of thoracic disease, 2020, 12(3):165-174.
[10] WALKER P, WHITTAKER C, WATSON O, et al. The global impact of COVID-19 and strategies for mitigation and suppression[EB/OL]. (2020?03?26)[2020?07?28] https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-12-global-impact-covid-19/.
[11] 范如国, 王奕博, 罗明, 等. 基于SEIR的新冠肺炎传播模型及拐点预测分析[J]. 电子科技大学学报, 2020, 49(3):369-374
FAN Ruguo, WANG Yibo, LUO Ming, et al. SEIR-based COVID-19 transmission model and inflection point prediction analysis[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):369-374
[12] ARMOUR G C, BUFFA E S. A heuristic algorithm and simulation approach to relative location of facilities[J]. Management science, 1963, 9(2):294-309.
[13] 梅文娟, 刘震, 朱静怡, 等. 新冠肺炎疫情极限IR实时预测模型[J]. 电子科技大学学报, 2020, 49(3):362-368
MEI Wenjuan, LIU Zhen, ZHU Jingyi, et al. Extreme IR model for COVID-19 real-time forecasting[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(3):362-368
[14] GUO Wei, XU Tao, TANG Keming. M-estimator-based online sequential extreme learning machine for predicting chaotic time series with outliers[J]. Neural computing and applications, 2017, 28(12):4093-4110.
[15] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA:IEEE, 2016, 770-778.
[16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2015-04-10)[2020-07-28] http://arxiv.org/abs/1409.1556.
[17] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY, USA:Curran Associates Inc., 2012:1097-1105.
[18] COLLOBERT R, WESTON J, BOTTOU L, et al. Natural language processing (almost) from scratch[J]. The journal of machine learning research, 2011, 12:2493-2537.
[19] TAY Y, LUU A T, HUI S C. Compare, compress and propagate:enhancing neural architectures with alignment factorization for natural language inference[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium, 2018:1565?1575.
[20] DEVLIN J, CHANG M W, LEE K, et al. BERT:Pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2019?05?24)[2020?07?28] http://arxiv.org/abs/1810.04805.
[21] HINTON G, DENG Li, YU Dong, et al. Deep neural networks for acoustic modeling in speech recognition:the shared views of four research groups[J]. IEEE signal processing magazine, 2012, 29(6):82-97.
[22] SAK H, SENIOR A, RAO K, et al. Fast and accurate recurrent neural network acoustic models for speech recognition[EB/OL]. (2015?07?24)[2020?07?28] http://arxiv.org/abs/1507.06947.
[23] XIONG W, DROPPO J, HUANG X, et al. Achieving human parity in conversational speech recognition[EB/OL]. (2015?07?24)[2020?07?28] https://arxiv.org/abs/1610.05256.
[24] LIPTON Z C. A critical review of recurrent neural networks for sequence learning[EB/OL]. (2015?10?17)[2020?07?28] http://arxiv.org/abs/1506.00019.
[25] WANG Jianyong, ZHANG Lei, GUO Quan, et al. Recurrent neural networks with auxiliary memory units[J]. IEEE transactions on neural networks and learning systems, 2018, 29(5):1652-1661.
[26] WANG Jianyong, ZHANG Lei, CHEN Yuanyuan, et al. A new delay connection for long short-term memory networks[J]. International journal of neural systems, 2018, 28(6):1750061.
[27] MALHOTRA P, VIG L, SHROFF G, et al. Long short term memory networks for anomaly detection in time series[C]//ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium, 2015:22?24.
[28] 云南省统计局, 国家统计局云南调查总队. 云南省2019年国民经济和社会发展统计公报[EB/OL]. (2020?04?14)[2020?07?28] http://stats.yn.gov.cn/tjsj/tjgb/202004/t20200414_938595.html.
[29] 上海市统计局. 2019年上海市国民经济和社会发展统计公报[EB/OL]. (2020?03?09)[2020?07?28] http://tjj.sh.gov.cn/tjgb/20200329/05f0f4abb2d448a69e4517f6a6448819.html.
[30] 陕西省统计局, 国家统计局陕西调查总队. 2019年陕西省国民经济和社会发展统计公报[EB/OL]. (2020?03?20)[2020?07?28] http://www.shaanxi.gov.cn/zfxxgk/fdzdgknr/tjxx/tjgb_240/wap.html.


更新日期/Last Update: 2021-06-25