[1]付常洋,王瑜,肖洪兵,等.基于深度学习与结构磁共振成像的抑郁症辅助诊断[J].智能系统学报,2021,16(3):544-551.[doi:10.11992/tis.201912006]
 FU Changyang,WANG Yu,XIAO Hongbing,et al.Assisted diagnosis of major depression disorder using deep learning and structural magnetic resonance imaging[J].CAAI Transactions on Intelligent Systems,2021,16(3):544-551.[doi:10.11992/tis.201912006]
点击复制

基于深度学习与结构磁共振成像的抑郁症辅助诊断

参考文献/References:
[1] 世界卫生组织. 抑郁症[EB/OL]. (2019?08?29)[2019?12?04] https://www.who.int/zh/news-room/fact-sheets/detail/depression.
World Health Organization. Depression fact sheets[EB/OL]. (2019?08?29)[2019?12?04] https://www.who.int/zh/news-room/fact-sheets/detail/depression.
[2] BRANDT W A, LOEW T, VON HEYMANN F, et al. How does the ICD-10 symptom rating (ISR) with four items assess depression compared to the BDI-II? A validation study[J]. Journal of affective disorders, 2015, 173:143-145.
[3] MASKE U E, HAPKE U, RIEDEL-HELLER S G, et al. Respondents’ report of a clinician-diagnosed depression in health surveys:comparison with DSM-IV mental disorders in the general adult population in Germany[J]. BMC psychiatry, 2017, 17(1):39.
[4] GIEDD J N. Structural magnetic resonance imaging of the adolescent brain[J]. Annals of the New York academy of sciences, 2004, 1021(1):77-85.
[5] GAO Shuang, CALHOUN V D, SUI Jing. Machine learning in major depression:from classification to treatment outcome prediction[J]. CNS neuroscience & therapeutics, 2018, 24(11):1037-1052.
[6] HILBERT K, LUEKEN U, MUEHLHAN M, et al. Separating generalized anxiety disorder from major depression using clinical, hormonal, and structural MRI data:a multimodal machine learning study[J]. Brain and behavior, 2017, 7(3):e00633.
[7] SANKAR A, ZHANG Tianhao, GAONKAR B, et al. Diagnostic potential of structural neuroimaging for depression from a multi-ethnic community sample[J]. BJPsych open, 2016, 2(4):247-254.
[8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[9] 马世龙, 乌尼日其其格, 李小平. 大数据与深度学习综述[J]. 智能系统学报, 2016, 11(6):728-742
MA Shilong, WUNIRI Qiqige, LI Xiaoping. Deep learning with big data:state of the art and development[J]. CAAI transactions on intelligent systems, 2016, 11(6):728-742
[10] 刘帅师, 程曦, 郭文燕, 等. 深度学习方法研究新进展[J]. 智能系统学报, 2016, 11(5):567-577
LIU Shuaishi, CHENG Xi, GUO Wenyan, et al. Progress report on new research in deep learning[J]. CAAI transactions on intelligent systems, 2016, 11(5):567-577
[11] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012:1097-1105.
[12] DONAHUE J, HENDRICKS L A, ROHRBACH M, et al. Long-term recurrent convolutional networks for visual recognition and description[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(4):677-691.
[13] KERMANY D S, GOLDBAUM M, CAI Wenjia, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5):1122-1131, e1-e2.
[14] 吕鸿蒙, 赵地, 迟学斌. 基于增强AlexNet的深度学习的阿尔茨海默病的早期诊断[J]. 计算机科学, 2017, 44(S1):50-60
LV Hongmeng, ZHAO Di, CHI Xuebin. Deep learning for early diagnosis of Alzheimer’s disease based on intensive AlexNet[J]. Computer science, 2017, 44(S1):50-60
[15] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Medical image analysis, 2017, 42:60-88.
[16] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:1-9.
[17] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer science, 2014, 18(3):178-182.
[18] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:2818-2826.
[19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:770-778.
[20] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA, 2017:2261-2269.
[21] ASHBURNER J, BARNES G, CHEN Chunchuan, et al. SPM12 manual[EB/OL]. (2019?01?13)[2020?08?29]. https://www.fil.ion.ucl.ac.uk/spm/software/spm12.
[22] ARNONE D, MCKIE S, ELLIOTT R, et al. State-dependent changes in hippocampal grey matter in depression[J]. Molecular psychiatry, 2013, 18(12):1265-1272.
[23] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille, France, 2015:448-456.
[24] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA, 2011:315-323.
[25] TAJBAKHSH N, SHIN J Y, GURUDU S R, et al. Convolutional neural networks for medical image analysis:full training or fine tuning[J]. IEEE transactions on medical imaging, 2016, 35(5):1299-1312.
[26] HON M, KHAN N M. Towards Alzheimer’s disease classification through transfer learning[C]//IEEE International Conference on Bioinformatics and Biomedicine. Kansas City, USA, 2017:1166-1169.
[27] LIU Renhao, HALL L O, GOLDGOF D B, et al. Exploring deep features from brain tumor magnetic resonance images via transfer learning[C]//International Joint Conference on Neural Networks. Vancouver, Canada, 2016:235-242.
[28] DA NóBREGA R V M, PEIXOTO S A, DA SILVA S P P, et al. Lung nodule classification via deep transfer learning in CT lung images[C]//IEEE 31st International Symposium on Computer-Based Medical Systems. Karlstad, Sweden, 2018:244-249.
[29] CHEN S, MA K, AND ZHENG Y. Med3D:transfer learning for 3D medical image analysis[EB/OL].(2019?04?09)[2019?09?025] https://arxiv.org/abs/1904.00625.
[30] DIEDERIK P K, JIMMY B. Adam:a method for stochastic optimization[J/OL]. (2017-1-30)[2019-9-29] https://arxiv.org/abs/1412.6980v5.
相似文献/References:
[1]廖智舟,李川,周军,等.抑郁症静息态EEG前后部脑电活动[J].智能系统学报,2014,9(2):168.[doi:10.3969/j.issn.1673-4785.201307017]
 LIAO Zhizhou,LI Chuan,ZHOU Jun,et al.Resting EEG based disorders in the anterior and posterior brain in depression[J].CAAI Transactions on Intelligent Systems,2014,9(3):168.[doi:10.3969/j.issn.1673-4785.201307017]

备注/Memo

收稿日期:2019-12-07。
基金项目:国家自然科学基金面上项目(61671028);国家重大科技研发子课题(ZLJC6 03-5-1)
作者简介:付常洋,硕士研究生,主要研究方向为图像处理与机器学习;王瑜,副教授,博士,中国自动化学会、中国电子学会和中国人工智能学会高级会员,生物信息学与人工生命专委会委员,IEEE和计算机学会会员,CCFYOCSEF委员,主要研究方向为图像处理与模式识别。主持国家自然科学基金面上项目2项、北京市自然科学基金面上项目1项。出版学术专著2部,发表学术论文30余篇;肖洪兵,副教授,博士,主要研究方向为传感器与高动态测试技术、嵌入式系统应用。在研以及完成的科研项目10余项,其中省级以上项目3项。获得北京市科技进步三等奖1项。取得软件著作权3项,实用新型专利3项。出版专著1部,主编教材3部,发表学术论文20余篇
通讯作者:王瑜.E-mail:wangyu@btbu.edu.cn

更新日期/Last Update: 2021-06-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134