[1]张婷,齐小刚.移动通信网络的中性集故障诊断方法研究[J].智能系统学报,2020,15(5):864-869.[doi:10.11992/tis.201906031]
 ZHANG Ting,QI Xiaogang.Research on neutral set fault diagnosis method for mobile communication networks[J].CAAI Transactions on Intelligent Systems,2020,15(5):864-869.[doi:10.11992/tis.201906031]
点击复制

移动通信网络的中性集故障诊断方法研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年5期
页码:
864-869
栏目:
学术论文—智能系统
出版日期:
2020-09-05

文章信息/Info

Title:
Research on neutral set fault diagnosis method for mobile communication networks
作者:
张婷1 齐小刚12
1. 西安电子科技大学 数学与统计学院,陕西 西安 710071;
2. 西安电子科技大学 宁波信息技术研究院,浙江 宁波,315200
Author(s):
ZHANG Ting1 QI Xiaogang12
1. School of Mathematics and Statistics, Xidian University, Xi’an 710071, China;
2. Xidian-Ningbo Information Technology Institute, Ningbo 315200, China
关键词:
故障诊断中性集不确定性移动通信网络话音业务特征权重阶段数据权重故障类型
Keywords:
fault diagnosisneutral setuncertaintymobile communication networkvoice servicefeature weightphase data weightfault type
分类号:
TP277
DOI:
10.11992/tis.201906031
文献标志码:
A
摘要:
随着故障诊断技术从面向网络设备逐渐向面向用户、面向业务的转变,故障识别能力和故障处理能力的不断提高,快速、准确地检测重大故障并及时收集重大故障信息,对缩短故障时长、提高工作效率、提升网络服务水平都具有重大意义。基于中性集故障诊断方法,本文提出一种故障特征权重和阶段数据权重的计算方法,并将此方法应用于移动通信网络的话音业务的故障诊断过程中。根据收集到的数据的统计分析结果,判断移动通信网络中未知故障样本的故障类型。通过举例分析,验证了本文所提出的故障特征权重和阶段数据权重设计方法的优越性。
Abstract:
With the change in network fault diagnosis technology—from equipment-oriented to user-oriented and business-oriented, with continuous improvement of fault identification ability and fault handling ability—rapid and accurate detection of major faults and timely collection of major fault information are of great significance to shortening the fault time, improving work efficiency, and raising the network service level. Based on the neutral set fault diagnosis method, this paper proposes a method for calculating the fault feature weight and phase data weight. Then, the method is applied for the fault diagnosis of voice service in mobile communication networks. The fault magnitude of unknown fault samples in mobile communication networks is judged according to the statistical analysis result of the collected data. The superiority of the proposed design method for fault feature weight and stage data weight is verified through the analysis of an example.

参考文献/References:

[1] 周畅. 计算机网络中的故障定位研究[J]. 软件工程, 2016, 19(12): 1-4
ZHOU Chang. A study on the fault localization technology in the computer network[J]. Software engineering, 2016, 19(12): 1-4
[2] GLOWACZ A, GLOWACZ Z. Diagnosis of stator faults of the single-phase induction motor using acoustic signals[J]. Applied acoustics, 2017, 117: 20-27.
[3] GAI Jingbo, HU Yifan. Research on fault diagnosis based on singular value decomposition and fuzzy neural network[J]. Shock and vibration, 2018: 8218657.
[4] TAN Ruomu, CAO Yi. Multi-layer contribution propagation analysis for fault diagnosis[J]. International journal of automation and computing, 2019, 16(1): 40-51.
[5] ZHOU Fanfu, QI Zhengwei, YAO Jianguo, et al. D2FL: design and implementation of distributed dynamic fault localization[J]. IEEE transactions on dependable and secure computing, 2018, 15(3): 378-392.
[6] 张成, 廖建新, 朱晓民. 一种基于增量贝叶斯疑似度的事件驱动故障定位算法[J]. 电子与信息学报, 2009, 31(6): 1501-1504
ZHANG Cheng, LIAO Jianxin, ZHU Xiaomin. An event-driven fault localization algorithm based on incremental bayesian suspected degree[J]. Journal of electronics & information technology, 2009, 31(6): 1501-1504
[7] CHEN Y Q, FINK O, SANSAVINI G. Combined fault location and classification for power transmission lines fault diagnosis with integrated feature extraction[J]. IEEE transactions on industrial electronics, 2018, 65(1): 561-569.
[8] TAY F E H, SHEN Lixiang. Fault diagnosis based on rough set theory[J]. Engineering applications of artificial intelligence, 2003, 16(1): 39-43.
[9] BIAN Tian, ZHENG Haoyang, YIN Likang, et al. Failure mode and effects analysis based on D numbers and TOPSIS[J]. Quality and reliability engineering international, 2018, 34(4): 501-515.
[10] JIANG Benben, ZHU Xiaoxiang, HUANG Dexian, et al. A combined canonical variate analysis and Fisher discriminant analysis (CVA-FDA) approach for fault diagnosis[J]. Computers & chemical engineering, 2015, 77: 1-9.
[11] ALI M, SMARANDACHE F. Complex neutrosophic set[J]. Neural computing and applications, 2017, 28(7): 1817-1834.
[12] ZHANG Xiaohong, BO Chunxi, SMARANDACHE F, et al. New operations of totally dependent-neutrosophic sets and totally dependent-neutrosophic soft sets[J]. Symmetry, 2018, 10(6): 187.
[13] ALI M, SMARANDACHE F, KHAN M. Study on the development of neutrosophic triplet ring and neutrosophic triplet field[J]. Mathematics, 2018, 6(4): 46.
[14] JIANG Wen, ZHONG Yu, DENG Xinyang. A neutrosophic set based fault diagnosis method based on multi-stage fault template data[J]. Symmetry, 2018, 10(8): 346.
[15] XU Xiaobin, ZHOU Zhe, WEN Chenglin. Data fusion algorithm of fault diagnosis considering sensor measurement uncertainty[J]. International journal on smart sensing and intelligent systems, 2013, 6(1): 171-190.
[16] SMARANDACHE F. A unifying field in logics: neutrosophic logic. Neutrosophy and neutrosophic logic[J]. Multiple-valued logic, 2002, 8(3): 385-438.
[17] ZADEH L A. Fuzzy sets[J]. Information and control, 1965, 8(3): 338-353.
[18] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy sets and systems, 1986, 20(1): 87-96.
[19] TURKSEN I B. Interval valued fuzzy sets based on normal forms[J]. Fuzzy sets and systems, 1986, 20(2): 191-210.
[20] PENG Juanjuan, WANG Jianqiang, WANG Jing, et al. Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems[J]. International journal of systems science, 2016, 47(10): 2342-2358.

相似文献/References:

[1]马大中,张化光,冯 健,等.一种基于多传感器信息融合的故障诊断方法[J].智能系统学报,2009,4(01):72.
 MA Da-zhong,ZHANG Hua-guang,FENG Jian,et al.A fault diagnosis method based on multi-sensor information fusion[J].CAAI Transactions on Intelligent Systems,2009,4(5):72.
[2]齐俊桐,韩建达.旋翼飞行机器人故障诊断与容错控制技术综述[J].智能系统学报,2007,2(02):31.
 QI Jun-tong,HAN Jian-da.Fault diagnosis and faulttolerant control of rotorcraft flying robots: a survey[J].CAAI Transactions on Intelligent Systems,2007,2(5):31.
[3]李红芳,等.一种新型免疫网络学习算法在故障诊断中的应用[J].智能系统学报,2008,3(05):449.
 L IHong-fang,ZHANG Qing-hua,et al.Application of a novel immune network learn ing algor ithm to fault diagnosis[J].CAAI Transactions on Intelligent Systems,2008,3(5):449.
[4]曲彦光,张勤,朱群雄.动态不确定因果图在化工系统动态故障诊断中的应用[J].智能系统学报,2015,10(03):354.[doi:10.3969/j.issn.1673-4785.201503012]
 QU Yanguang,ZHANG Qin,ZHU Qunxiong.Application of dynamic uncertain causality graph to dynamic fault diagnosis in chemical processes[J].CAAI Transactions on Intelligent Systems,2015,10(5):354.[doi:10.3969/j.issn.1673-4785.201503012]
[5]文天柱,许爱强,邓露.可拓否定选择算法及其在故障诊断中的应用[J].智能系统学报,2015,10(03):488.[doi:10.3969/j.issn.1673-4785.201402020]
 WEN Tianzhu,XU Aiqiang,DENG Lu.A new negative selection algorithm based on Extenics and its application in fault diagnosis[J].CAAI Transactions on Intelligent Systems,2015,10(5):488.[doi:10.3969/j.issn.1673-4785.201402020]
[6]杨佳婧,张勤,朱群雄.动态不确定因果图在化工过程故障诊断中的应用[J].智能系统学报,2014,9(02):154.[doi:10.3969/j.issn.1673-4785.201402012]
 YANG Jiajing,ZHANG Qin,ZHU Qunxiong.Application of Dynamic Uncertain Causality Graphto fault diagnosis in chemical processes[J].CAAI Transactions on Intelligent Systems,2014,9(5):154.[doi:10.3969/j.issn.1673-4785.201402012]
[7]张龙,陈宸,韩宁,等.压缩感知理论中的建筑电气系统故障诊断[J].智能系统学报,2014,9(02):204.[doi:10.3969/j.issn.1673-4785.201310026]
 ZHANG Long,CHEN Chen,HAN Ning,et al.Fault diagnosis of electrical systems in buildingsbased on compressed sensing[J].CAAI Transactions on Intelligent Systems,2014,9(5):204.[doi:10.3969/j.issn.1673-4785.201310026]
[8]夏飞,马茜,张浩,等.改进D-S证据理论在电动汽车锂电池故障诊断中的应用[J].智能系统学报,2017,12(04):526.[doi:10.11992/tis.201605001]
 XIA Fei,MA Xi,ZHANG Hao,et al.Application of improved D-S evidence theory in fault diagnosis of lithium batteries in electric vehicles[J].CAAI Transactions on Intelligent Systems,2017,12(5):526.[doi:10.11992/tis.201605001]
[9]齐小刚,牛红曼,刘兴成,等.多层信息网络故障定位综述[J].智能系统学报,2019,14(1):44.[doi:10.11992/tis.201804062]
 QI Xiaogang,NIU Hongman,LIU Xingcheng,et al.Survey of fault localization in multilayer information networks[J].CAAI Transactions on Intelligent Systems,2019,14(5):44.[doi:10.11992/tis.201804062]
[10]郑静,熊伟丽.基于互信息的多块k近邻故障监测及诊断[J].智能系统学报,2021,16(4):717.[doi:10.11992/tis.202007035]
 ZHENG Jing,XIONG Weili.Multiblock k-nearest neighbor fault monitoring and diagnosis based on mutual information[J].CAAI Transactions on Intelligent Systems,2021,16(5):717.[doi:10.11992/tis.202007035]

备注/Memo

备注/Memo:
收稿日期:2019-06-18。
基金项目:国家自然科学基金项目(61572435,61877067);教育部-中国移动联合基金项目(MCM20170103);西安市科技创新项目(201805029YD7CG13-6);宁波市自然科学基金项目(2016A610035;2017A610119)
作者简介:张婷,硕士研究生,主要研究方向为信息通信网络的级联失效与故障诊断技术,故障诊断方法及其在通信网络中的应用,参与中国移动联合基金项目;齐小刚,教授,博士生导师,主要研究方向为系统建模与故障诊断,申请发明专利47项(授权19项),登记软件著作权4项。发表学术论文100余篇
通讯作者:张婷.E-mail:1819798371@qq.com
更新日期/Last Update: 2021-01-15