[1]夏飞,马茜,张浩,等.改进D-S证据理论在电动汽车锂电池故障诊断中的应用[J].智能系统学报,2017,(04):526-537.[doi:10.11992/tis.201605001]
 XIA Fei,MA Xi,ZHANG Hao,et al.Application of improved D-S evidence theory in fault diagnosis of lithium batteries in electric vehicles[J].CAAI Transactions on Intelligent Systems,2017,(04):526-537.[doi:10.11992/tis.201605001]
点击复制

改进D-S证据理论在电动汽车锂电池故障诊断中的应用(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2017年04期
页码:
526-537
栏目:
出版日期:
2017-08-25

文章信息/Info

Title:
Application of improved D-S evidence theory in fault diagnosis of lithium batteries in electric vehicles
作者:
夏飞123 马茜12 张浩123 彭道刚12 孙朋12 罗志疆12
1. 上海电力学院自动化工程学院, 上海 200090;
2. 上海发电过程智能管控工程技术研究中心, 上海 200090;
3. 同济大学电子与信息工程学院, 上海 201804
Author(s):
XIA Fei123 MA Xi12 ZHANG Hao123 PENG Daogang12 SUN Peng12 LUO Zhijiang12
1. College of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
2. Shanghai Engineering Research Center of Intelligent Management and Control for Power Process, Shanghai 200090, China;
3. College of Electronics a
关键词:
故障诊断电动汽车锂电池改进证据理论信息融合
Keywords:
fault diagnosiselectric vehiclelithium batteryimproved evidence theoryinformation fusion
分类号:
TP301
DOI:
10.11992/tis.201605001
摘要:
针对电动汽车电池系统的故障采用基于神经网络的改进D-S证据理论组合规则完成诊断过程。为了避免单一途径的诊断可能造成故障漏检误检的状况,决策层采用D-S证据理论组合规则来确定基于BP网络和RBF网络两种故障诊断算法结果。然而为了克服D-S证据理论处理高度冲突证据的缺陷,本文提出了一种基于神经网络改进的D-S证据理论组合规则。首先,采用神经网络对电池故障进行初步诊断,结合网络诊断准确率来分配不确定信息并构造证据体,又引入了证据间的支持矩阵来确定新的加权证据体。然后,把各个焦元的信任度融入D-S证据理论组合规则,从而融合神经网络证据体及新加权证据体。最后,依据决策准则确定锂电池系统的故障状态。通过仿真实验验证了本文提出的改进D-S证据理论融合诊断方法在电动汽车锂电池故障诊断中的有效性。
Abstract:
In this study,we used the improved Dempster-Shafer (D-S) evidence theory combination rules based on the neural network to construct a fault diagnosis process for an electric vehicle battery system.To avoid misdiagnoses and missed diagnoses caused by a single fault diagnosis method,we applied the D-S evidence theory combination principle to determine the result based on the back-propagation (BP) network and radial basis function (RBF) network fault diagnosis algorithm.However,to overcome the defects in the D-S evidence theory in dealing with highly conflicting evidence,we propose a D-S evidence theory combination principle based on an improved neural network.First,we apply a neural network to perform a preliminary diagnosis regarding battery failure and the accuracy of the network diagnosis.Then,we distribute indefinite information and construct a body of evidence.We also introduce a support matrix of this evidence to determine a new weighted body of evidence.We then integrate the credibility of every focal element into the D-S evidence theory combination rules to fuse the neural network body of evidence with the new weighted body of evidence.Lastly,based on the decision criterion,we determine the failure state of the lithium battery system.Our simulation results show that our proposed improved D-S evidence theory fusion diagnosis method is effective in the fault diagnosis of electric vehicles with lithium batteries.

参考文献/References:

[1] 王一卉,姜长泓.模糊神经网络专家系统在动力锂电池组故障诊断中的应用[J]. 电测与仪表, 2015, 52(14):118-123. WANG Yihui, JIANG Changhong. Fuzzy neural network ex-pert system for fault diagnosis in power lithium battery appli-cation[J]. Electrical measurement & instrumentation, 2015, 52(14):118-123.
[2] 卿平勇.混合动力汽车电池管理系统故障诊断与健康管理研究[D].北京:北京理工大学,2015. QING Pingyong. Reserch on fault diagnosis and health man-agement of battery management system for hybrid electric ve-hicle[D].Beijing:Beijing Institute of Technology,2015.
[3] 檀斐.车用动力锂离子电池故障诊断研究与实现[D].北京:北京理工大,2015. TAN Fei. Fault diagnosis and implementation of electric ve-hicle lithiumion battery system[D].Beijing:Beijing Institute of Technology,2015.
[4] 付家才,万遂.基于D-S证据理论和BP神经网络的多传感器信息融合[J].自动化与仪器仪表, 2011, 1(153):22-24. FUJiacai,WAN Sui. Multisensor information fusion based on D-S evidence theory and BP neural network[J]. Automation & instrumentation, 2011, 1(153):22-24.
[5] 程加堂,段志梅.基于QPSO-BP和改进D-S的水电机组振动故障诊断[J].电力系统保护与控制, 2015,43(19):66-71. CHENG Jiatang, DUAN Zhimei, AI Li, et al. Vibration fault diagnosis for hydroelectric generating unit based on QPSO-BP and modified D-S theory[J]. Power system pro-tection and control, 2015, 43(19):66-71.
[6] 徐春梅,彭道刚,张悦. 基于集成法的汽轮机组智能故障诊断仿真研究[J]. 计算机仿真, 2015(07):408-412. XU Chunmei,PENG Daogang,ZHANG Yue. simulation re-search on intelligent fault diagnosis for turbine generator unit based on integrated method[J]. Computer simulation, 2015(07):408-412.
[7] 白剑林,王煜.一种解决D-S理论证据冲突的有效方法[J].系统工程与电子技术,2009,31(9):2106-2109. BAI Jianlin, WANG Yu. Efficient combination approach to conflict evidence for D-S theory[J]. Systems engineering and electronics, 2009,31(9):2106-2109.
[8] 韩德强,邓勇,韩崇昭,等. 基于证据距离与不确定度的证据组合方法[J]. 红外与毫米波学报, 2011, 30(5):396-400. HAN Deqiang, DENG Yong, HAN Chongzhao, et al. Weighted evidence combination based on distance of evidence and uncertainty measure[J]. Journal of infrared millim waves, 2011, 30(5):396-400.
[9] 郭雷雷.智能环境下基于视频多特征融合的单说话人跟踪方法研究[D].兰州:兰州理工大学,2014. GUO Leilei. The research of single speaker tracking algorithm based on video multi-feature fusion in meeting room environment[D].Lanzhou:Lanzhou university of tech-nology, 2014.
[10] 牛强军,黄家成.基于改进的D-S决策融合的航电设备故障诊断[J]. 计算机工程与设计, 2015, 36(8):2255-2259. NIU Qiangjun, HUANG Jiacheng. Avionics equipment fault diagnosis based onimproved dempster-shafe decision fusion method[J]. Computer engineering and design, 2015, 36(8):2255-2259.
[11] Mengmeng Ma, Jiyao An.Combination of evidence with dif-ferent weighting factors:a novel probabilistic-based dissim-ilarity measure approach[J]. Journal of sensors, 2015:1-9.
[12] 费翔,周健.一种处理冲突证据的D-S证据权重计算方法[J]. 计算机工程, 2016, 42(2):142-145. FEI Xiang, ZHOU Jian. A D-S evidence weight computing method for conflict evidence[J]. Computer engineering, 2016, 42(2):142-145.
[13] 胡海亮,钟求喜.基于证据可信度的D-S理论改进方法[J].计算机应用与软件, 2016, 33(6):13-19. HU Hailiang, ZHONG Qiuxi. An improved method for d-s theory based on evidence credibility[J]. Computer applica-tions and software, 2016, 33(6):13-19.
[14] RONALD R Y. On the dempster-shafer framework and new combination rules[J]. Information sciences (S1007-7634), 1987, 41(2):93-137.
[15] 孙全,叶秀清,顾伟康. 一种新的基于证据理论的合成公式[J]. 电子学报, 2000(08):117-119. SUN Quan, YE Xiuqing, GU Weikang. A new combination rules of evidence theory[J]. Acta electronica sinica, 2000(08):117-119.
[16] 李弼程, 王波, 魏俊,等. 一种有效的证据理论合成公式[J]. 数据采集与处理, 2002, 17(1):33-36. LI Bicheng, WANG Bo, WEI Jun,et al. An efficient com-bination rule of evidence theory[J]. Journal of data acqui-sition & processing, 2002, 17(1):33-36.
[17] 王力.基于DS证据理论的多传感器数据融合算法研究与应用[D].太原:太原理工大学,2015. WANG li. Research and application of multi-sensor fusion algorithm based on DS evidence theory[D]. Taiyuan:Taiyuan University of Technology, 2015.
[18] ZHAO Y, JIA R, LIU C. An evaluation method of under-water ocean environment safety situation based on d-s evi-dence theory[J]. Advances in meteorology, 2015, 2015(5):1-8.
[19] 吴强,姜礼平,季傲.基于模糊集和D-S证据理论的空中作战目标识别[J].指挥控制与仿真, 2015, 36(4):54-58. WU Qiang, JIANG Liping, JI Ao. Aircraft target identification based on fuzzy sets and d-s evidence theory in air operation[J]. Command control & simulation, 2015, 36(4):54-58.
[20] 吕雪婷,贾瑞生, 孙惠惠.证据冲突下D-S融合算法的改进[J].系统仿真学报,2013, 25(3):571-574. LV Xueting, JIA Ruisheng, SUN Huihui. Improvement of D-S fusion algorithm under evidence conflict[J]. Journal of system simulation, 2013, 25(3):571-574.
[21] 叶彦斐,郑源.基于证据修正及冲突分配的新证据推理规则[J].仪表技术与传感器, 2014, 12:118-121. YE Yanfei, ZHENG Yuan. New evidence reasoning rule based on eveidence modifying and conficts allocating[J]. Instrument technique and sensor, 2014, 12:118-121.
[22] 曹洁,郭雷雷.一种基于局部冲突分配的证据组合规则[J].计算机应用研究, 2013, 30(7):2032-2035. CAO Jie, GUO Leilei. Evidence combination rule based on local conflict distribution strategy[J]. Application research of computers, 2013, 30(7):2032-2035.
[23] 李军伟,程咏梅, 潘泉,等.基于焦元距离的冲突证据组合规则[J].系统工程与电子技术, 2010, 32(11):2360-2366. LI Junwei, CHENG Yongmei, PAN Quan, et al. Combina-tion rule of conflicting evidence based on focal element dis-tance[J]. Systems engineering and electronics, 2010, 32(11):2360-2366.
[24] DUBOIS D,PRADE H. A set-theoretic view on belief func-tions:logic operations and approximations by fuzzy sets[J]. International journal of general syst, 1986, 12:193-226.
[25] 葛哲学,孙志强.神经网络理论与MATLABR2007实现[M]. 北京:电子工业出版社,2007:240.

相似文献/References:

[1]马大中,张化光,冯 健,等.一种基于多传感器信息融合的故障诊断方法[J].智能系统学报,2009,(01):72.
 MA Da-zhong,ZHANG Hua-guang,FENG Jian,et al.A fault diagnosis method based on multi-sensor information fusion[J].CAAI Transactions on Intelligent Systems,2009,(04):72.
[2]齐俊桐,韩建达.旋翼飞行机器人故障诊断与容错控制技术综述[J].智能系统学报,2007,(02):31.
 QI Jun-tong,HAN Jian-da.Fault diagnosis and faulttolerant control of rotorcraft flying robots: a survey[J].CAAI Transactions on Intelligent Systems,2007,(04):31.
[3]李红芳,等.一种新型免疫网络学习算法在故障诊断中的应用[J].智能系统学报,2008,(05):449.
 L IHong-fang,ZHANG Qing-hua,et al.Application of a novel immune network learn ing algor ithm to fault diagnosis[J].CAAI Transactions on Intelligent Systems,2008,(04):449.
[4]曲彦光,张勤,朱群雄.动态不确定因果图在化工系统动态故障诊断中的应用[J].智能系统学报,2015,(03):354.[doi:10.3969/j.issn.1673-4785.201503012]
 QU Yanguang,ZHANG Qin,ZHU Qunxiong.Application of dynamic uncertain causality graph to dynamic fault diagnosis in chemical processes[J].CAAI Transactions on Intelligent Systems,2015,(04):354.[doi:10.3969/j.issn.1673-4785.201503012]
[5]文天柱,许爱强,邓露.可拓否定选择算法及其在故障诊断中的应用[J].智能系统学报,2015,(03):488.[doi:10.3969/j.issn.1673-4785.201402020]
 WEN Tianzhu,XU Aiqiang,DENG Lu.A new negative selection algorithm based on Extenics and its application in fault diagnosis[J].CAAI Transactions on Intelligent Systems,2015,(04):488.[doi:10.3969/j.issn.1673-4785.201402020]
[6]杨佳婧,张勤,朱群雄.动态不确定因果图在化工过程故障诊断中的应用[J].智能系统学报,2014,(02):154.[doi:10.3969/j.issn.1673-4785.201402012]
 YANG Jiajing,ZHANG Qin,ZHU Qunxiong.Application of Dynamic Uncertain Causality Graphto fault diagnosis in chemical processes[J].CAAI Transactions on Intelligent Systems,2014,(04):154.[doi:10.3969/j.issn.1673-4785.201402012]
[7]张龙,陈宸,韩宁,等.压缩感知理论中的建筑电气系统故障诊断[J].智能系统学报,2014,(02):204.[doi:10.3969/j.issn.1673-4785.201310026]
 ZHANG Long,CHEN Chen,HAN Ning,et al.Fault diagnosis of electrical systems in buildingsbased on compressed sensing[J].CAAI Transactions on Intelligent Systems,2014,(04):204.[doi:10.3969/j.issn.1673-4785.201310026]
[8]许斌杰,王耀南.萤火虫算法的电动汽车综合成本运行优化研究[J].智能系统学报,2017,(02):166.[doi:10.11992/tis.200603024]
 XU Binjie,WANG Yaonan.Optimizing the composite cost of electric vehicles based on the firefly optimization model[J].CAAI Transactions on Intelligent Systems,2017,(04):166.[doi:10.11992/tis.200603024]

备注/Memo

备注/Memo:
收稿日期:2016-05-03。
基金项目:上海市"科技创新行动计划"高新技术领域科研项目(15111106800);上海市发电过程智能管控工程技术研究中心项目(14DZ2251100);上海市电站自动化技术重点实验室开放课题(13DZ2273800).
作者简介:夏飞,男,1978年生,副教授,博士,主要研究方向为故障诊断、图像处理。发表学术论文多篇;马茜,女,1990年生,硕士研究生,主要研究方向为电动汽车锂电池故障诊断;张浩,男,1962年生,教授,博导,博士,主要研究方向为电力系统自动化、系统工程。发表学术论文多篇。
通讯作者:张浩,E-mail:hzhangk@163.com.
更新日期/Last Update: 2017-08-25