[1]张晓鹤,米据生,李美争.粒协调决策形式背景的属性约简与规则融合[J].智能系统学报,2019,14(06):1138-1143.[doi:10.11992/tis.201905050]
 ZHANG Xiaohe,MI Jusheng,LI Meizheng.Attribute reduction and rule fusion in granular consistent formal decision contexts[J].CAAI Transactions on Intelligent Systems,2019,14(06):1138-1143.[doi:10.11992/tis.201905050]
点击复制

粒协调决策形式背景的属性约简与规则融合(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年06期
页码:
1138-1143
栏目:
出版日期:
2019-11-05

文章信息/Info

Title:
Attribute reduction and rule fusion in granular consistent formal decision contexts
作者:
张晓鹤1 米据生1 李美争2
1. 河北师范大学 数学与信息科学学院, 河北 石家庄 050024;
2. 河北师范大学 计算机与网络空间安全学院, 河北 石家庄 050024
Author(s):
ZHANG Xiaohe1 MI Jusheng1 LI Meizheng2
1. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China;
2. College of Computer and Cyber Security, Hebei Normal University, Shijiazhuang 050024, China
关键词:
属性约简决策规则形式背景辨识矩阵包含度规则提取粒计算概念格
Keywords:
attribute reductiondecision rulesformal contextdiscernibility matrixinclusionsextracting rulesgranular computingconcept lattice
分类号:
O236;TP18
DOI:
10.11992/tis.201905050
摘要:
针对基于决策形式背景进行属性约简与规则提取能够更便捷有效地获取知识,因此规则提取及属性约简是形式概念分析理论重要的研究课题。本文基于等价关系研究粒协调决策形式背景的属性约简与规则提取,定义粒协调集与粒约简,给出粒协调集判定定理,并结合布尔方法给出属性约简算法,最后利用集值向量包含度这一工具给出决策形式背景中的乐观规则融合方法与悲观规则融合方法。
Abstract:
Attribute reduction and rule acquisition based on formal decision contexts can acquire knowledge more conveniently and effectively; thus, rule acquisition and attribute reduction are two key research directions of the theory of formal concept analysis (FCA). This study investigates attribute reduction and rule acquisition based on an equivalence relation in formal granular consistent decision contexts. In this paper, the granular consistent set and granular reduction are defined, and the judgment theory of the granular consistent set is given, and by combination with the Boolean method, the granular reduction is formulated. Finally, using the inclusion degree of set-valued vectors, optimistic and pessimistic rule fusion methods in formal decision contexts are proposed.

参考文献/References:

[1] WILLE R. Restructuring lattice theory:an approach based on hierarchies of concepts[M]//RIVAL I. Ordered Sets. Dordrecht:Springer, 1982:445-470.
[2] GANTER B, WILLE R. Formal concept analysis:Mathematical foundations[M]. Berlin:Springer, 1999.
[3] SUTTON A, MALETIC J I. Recovering UML class models from C++:a detailed explanation[J]. Information and software technology, 2007, 49(3):212-229.
[4] MISSAOUI R, GODIN R, BOUJENOUI A. Extracting exact and approximate rules from databases[C]//Proceedings of the SOFTEKS Workshop on Incompleteness and Uncertainty in Information Systems. Berlin, Heidelberg:Springer, 1993:209-222.
[5] SHAO Mingwen, LEUNG Y, WU Weizhi. Rule acquisition and complexity reduction in formal decision contexts[J]. International journal of approximate reasoning, 2014, 55(1):259-274.
[6] WU Weizhi, LEUNG Y, MI Jusheng. Granular computing and knowledge reduction in formal contexts[J]. IEEE transactions on knowledge and data engineering, 2009, 21(10):1461-1474.
[7] LI Jinhua, MEI Changlin, LV Yuejin. Knowledge reduction in decision formal contexts[J]. Knowledge-based systems, 2011, 24(5):709-715.
[8] LI Jinhua, MEI Changlin, LV Yuejin. Knowledge reduction in real decision formal contexts[J]. Information sciences, 2012, 189:191-207.
[9] LI Jinhua, MEI Changlin, WANG Junhong, et al. Rule-preserved object compression in formal decision contexts using concept lattices[J]. Knowledge-based systems, 2014, 71:435-445.
[10] LI Junyu, WANG Xia, WU Weizhi, et al. Attribute reduction in inconsistent formal decision contexts based on congruence relations[J]. International journal of machine learning and cybernetics, 2017, 8(1):81-94.
[11] LI Leijun, MI Jusheng, XIE Bin. Attribute reduction based on maximal rules in decision formal context[J]. International journal of computational intelligence systems, 2014, 7(6):1044-1053.
[12] CHEN Jinkun, LI Jinjin. An application of rough sets to graph theory[J]. Information sciences, 2012, 201:114-127.
[13] CHEN Jinkun, MI Jusheng, XIE Bin, et al. A fast attribute reduction method for large formal decision contexts[J]. International journal of approximate reasoning, 2019, 106:1-17.
[14] YANG Hongzhi, YEE L, SHAO Mingwen. Rule acquisition and attribute reduction in real decision formal contexts[J]. Soft computing, 2011, 15(6):1115-1128.
[15] QI Jianjun, QIAN Ting, WEI Ling. The connections between three-way and classical concept lattices[J]. Knowledge-based systems, 2016, 91:143-151.
[16] ZHANG Qi, SHI Chongyang, NIU Zhendong, et al. HCBC:a hierarchical case-based classifier integrated with conceptual clustering[J]. Transactions on knowledge and data engineering, 2019, 31(1):152-165.
[17] ZHANG Xiaoyan, WEI Ling, XU Weihua. Attributes reduction and rules acquisition in an lattice-valued information system with fuzzy decision[J]. International journal of machine learning and cybernetics, 2017, 8(1):135-147.
[18] 张文修, 梁怡, 吴志伟. 信息系统与知识发现[M]. 北京:科学出版社, 2003.
[19] 张文修, 仇国芳. 基于粗糙集的不确定决策[M]. 北京:清华大学出版社, 2005. ZHANG Wenxiu, QIU Guofang. Uncertain decision making based on rough sets[M]. Beijing:Tsinghua University Press, 2005.

相似文献/References:

[1]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(02):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(06):40.
[2]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(02):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(06):132.
[3]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(02):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8(06):183.[doi:10.3969/j.issn.1673-4785.201209056]
[4]陈坚,陈健,邵毅明,等.粗糙集的过饱和多交叉口协同优化模型研究[J].智能系统学报,2015,10(5):783.[doi:10.11992/tis.201406045]
 CHEN Jian,CHEN Jian,SHAO Yiming,et al.Collaborative optimization model for oversaturated multiple intersections based on the rough set theory[J].CAAI Transactions on Intelligent Systems,2015,10(06):783.[doi:10.11992/tis.201406045]
[5]乔丽娟,徐章艳,谢小军,等.基于知识粒度的不完备决策表的属性约简算法[J].智能系统学报,2016,11(1):129.[doi:10.11992/tis.201506029]
 QIAO Lijuan,XU Zhangyan,XIE Xiaojun,et al.Efficient attribute reduction algorithm for an incomplete decision table based on knowledge granulation[J].CAAI Transactions on Intelligent Systems,2016,11(06):129.[doi:10.11992/tis.201506029]
[6]鞠恒荣,马兴斌,杨习贝,等.不完备信息系统中测试代价敏感的可变精度分类粗糙集[J].智能系统学报,2014,9(02):219.[doi:10.3969/j.issn.1673-4785.201307010]
 JU Hengrong,MA Xingbin,YANG Xibei,et al.Test-cost-sensitive based variable precision classification rough set in incomplete information system[J].CAAI Transactions on Intelligent Systems,2014,9(06):219.[doi:10.3969/j.issn.1673-4785.201307010]
[7]韦碧鹏,吕跃进,李金海.α优势关系下粗糙集模型的属性约简[J].智能系统学报,2014,9(02):251.[doi:10.3969/j.issn.1673-4785.201307012]
 WEI Bipeng,LÜ,Yuejin,et al.Attribute reduction based on the rough set model under α dominance relation[J].CAAI Transactions on Intelligent Systems,2014,9(06):251.[doi:10.3969/j.issn.1673-4785.201307012]
[8]钱进,朱亚炎.面向成组对象集的增量式属性约简算法[J].智能系统学报,2016,11(4):496.[doi:10.11992/tis.201606005]
 QIAN Jin,ZHU Yayan.An incremental attribute reduction algorithm for group objects[J].CAAI Transactions on Intelligent Systems,2016,11(06):496.[doi:10.11992/tis.201606005]
[9]冯丹,黄洋,石云鹏,等.连续型数据的辨识矩阵属性约简方法[J].智能系统学报,2017,12(03):371.[doi:10.11992/tis.201704032]
 FENG Dan,HUANG Yang,SHI Yunpeng,et al.A discernibility matrix-based attribute reduction for continuous data[J].CAAI Transactions on Intelligent Systems,2017,12(06):371.[doi:10.11992/tis.201704032]
[10]高学义,张楠,童向荣,等.广义分布保持属性约简研究[J].智能系统学报,2017,12(03):377.[doi:10.11992/tis.201704025]
 GAO Xueyi,ZHANG Nan,TONG Xiangrong,et al.Research on attribute reduction using generalized distribution preservation[J].CAAI Transactions on Intelligent Systems,2017,12(06):377.[doi:10.11992/tis.201704025]

备注/Memo

备注/Memo:
收稿日期:2019-05-27。
基金项目:国家自然科学基金项目(61573127,61502144);河北省自然科学基金项目(F2018205196);河北省高等学校科学技术研究项目(BJ2019014,QN2017095);河北省三三三人才工程培养经费(A2017002112);河北师范大学博士基金项目(L2017B19)
作者简介:张晓鹤,女,1993生,硕士研究生,主要研究方向为粗糙集、概念格;米据生,男,1966年生,教授,博士生导师,主要研究方向为粗糙集、粒计算、概念格、数据挖掘与近似推理。主持国家自然科学基金项目3项,教育部博士点基金项目1项。获得省级自然科学奖3项。发表学术论文130余篇;李美争,女,1984年生,讲师,博士,CCF会员,主要研究方向为粒计算、概念格。发表学术论文10余篇。
通讯作者:张晓鹤.E-mail:985740655@qq.com
更新日期/Last Update: 2019-12-25