[1]单义,杨金福,武随烁,等.基于跳跃连接金字塔模型的小目标检测[J].智能系统学报,2019,14(6):1144-1151.[doi:10.11992/tis.201905041]
 SHAN Yi,YANG Jinfu,WU Suishuo,et al.Skip feature pyramid network with a global receptive field for small object detection[J].CAAI Transactions on Intelligent Systems,2019,14(6):1144-1151.[doi:10.11992/tis.201905041]
点击复制

基于跳跃连接金字塔模型的小目标检测

参考文献/References:
[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH, USA, 2014:580-587.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, 2015:1440-1448.
[3] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International journal of computer vision, 2013, 104(2):154-171.
[4] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6):1137-1149.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016:779-788.
[6] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot MultiBox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, the Netherlands, 2016:21-37.
[7] BELL S, ZITNICK C L, BALA K, et al. Inside-outside net:detecting objects in context with skip pooling and recurrent neural networks[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016:2874-2883.
[8] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017:936-944.
[9] FU Chengyang, LIU Wei, RANGA A, et al. DSSD:deconvolutional single shot detector[J]. arXiv:1701.06659, 2017.
[10] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016:770-778.
[11] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015.
[12] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[J]. arXiv:1409.1556, 2014.
[13] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The Pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2):303-338.
[14] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO:common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014:740-755.
[15] DAI Jifeng, LI Yi, HE Kaiming, et al. R-FCN:object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain, 2016:379-387.
[16] SHEN Zhiqiang, LIU Zhuang, LI Jianguo, et al. DSOD:learning deeply supervised object detectors from scratch[C]//Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy, 2017:1937-1945.
[17] REDMON J, FARHADI A. YOLO9000:better, faster, stronger[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017:6517-6525.
[18] ZHOU Peng, NI Bingbing, GENG Cong, et al. Scale-transferrable object detection[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA, 2018:528-537.
[19] GIDARIS S, KOMODAKIS N. Object detection via a multi-region and semantic segmentation-aware CNN model[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile, 2015:1134-1142.
[20] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA, 2017:2261-2269.

备注/Memo

收稿日期:2019-05-23。
基金项目:国家自然科学基金项目(6153302);北京市自然科学基金项目(4182009)
作者简介:单义,男,1992年生,硕士研究生,主要研究方向为深度学习、计算机视觉;杨金福,男,1977年生,教授,主要研究方向为机器学习、机器视觉、智能计算与智能系统。近年来承担包括国家大科学工程、国家重点研发计划、国家973计划、国家863计划、国家自然科学基金、北京市自然科学基金等20多项科研项目。申请国家发明专利30余项(获得授权20余项),获得软件著作权登记10余项,发表学术论文80余篇;武随烁,男,1997年生,硕士研究生,主要研究方向为深度学习、计算机视觉
通讯作者:单义.E-mail:15732036708@163.com

更新日期/Last Update: 2019-12-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134