[1]陈杰,沈艳霞,陆欣.基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报编辑部,2016,11(2):172-179.[doi:10.11992/tis.201506024]
 CHEN Jie,SHEN Yanxia,LU Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI Transactions on Intelligent Systems,2016,11(2):172-179.[doi:10.11992/tis.201506024]
点击复制

基于信息反馈和改进适应度评价的人工蜂群算法(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年2期
页码:
172-179
栏目:
出版日期:
2016-04-25

文章信息/Info

Title:
Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation
作者:
陈杰 沈艳霞 陆欣
江南大学 物联网技术应用教育部工程研究中心, 江苏 无锡 214122
Author(s):
CHEN Jie SHEN Yanxia LU Xin
Research Center of Engineering Applications for IOT, Jiangnan University, Wuxi 214122, China
关键词:
人工蜂群算法群体智能进化算法函数优化信息反馈
Keywords:
artificial bee colony algorithmswarm intelligenceevolutionary algorithmfunction optimizationinformation feedback
分类号:
TP18
DOI:
10.11992/tis.201506024
摘要:
针对原始人工蜂群算法存在收敛速度慢和易陷入局部最优的不足,提出了一种基于信息反馈和改进适应度评价的人工蜂群算法。首先,引入种群个体分量记忆机制对个体信息进行反馈以增强种群开发能力,加快算法收敛速度;其次,为避免因种群后期无法识别优秀个体导致的"早熟"现象,通过改进适应度函数增大不同个体间解的差异性;最后,采用最优蜜源引导机制改进淘汰更新函数以避免不良个体的产生。对标准函数的测试结果表明,改进后算法有较快的收敛速度和较高的收敛精度。
Abstract:
The artificial bee colony (ABC) algorithm converges slowly and easily gets stuck on local solutions; hence, an ABC algorithm based on information feedback and an improved fitness value evaluation is proposed. The algorithm first introduces a memory mechanism for individual components to feedback information to enhance its capacity for population exploitation and to accelerate the convergence speed. Then, it adopts a new fitness function to increase the difference between individuals and to avoid premature convergence from failing to identify the best individual. Finally, the algorithm integrates an optimal nectar-source guidance mechanism into the knockout function to prevent the production of unexpected individuals. Experiments were conducted on standard functions and were compared with those with several typical improved ABCs. The results show that the improved algorithm accelerates the convergence rate and improves the solution accuracy.

参考文献/References:

[1] KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied soft computing, 2008, 8(1): 687-697.
[2] 秦全德, 程适, 李丽, 等. 人工蜂群算法研究综述[J]. 智能系统学报, 2014, 9(2): 127-135. QIN Quande, CHENG Shi, LI Li, et al. Artificial bee colony algorithm: a survey[J]. CAAI transactions on intelligent systems, 2014, 9(2): 127-135.
[3] 温长吉, 王生生, 于合龙, 等. 基于改进蜂群算法优化神经网络的玉米病害图像分割[J]. 农业工程学报, 2013, 29(13): 142-149. WEN Changji, WANG Shengsheng, YU Helong, et al. Image segmentation method for maize diseases based on pulse coupled neural network with modified artificial bee algorithm[J]. Transactions of the Chinese society of agricultural engineering, 2013, 29(13): 142-149.
[4] OZTURK C, KARABOGA D. Hybrid artificial bee colony algorithm for neural network training[C]//Proceedings of IEEE Congress on Evolutionary Computation. New Orleans, LA: IEEE, 2011: 84-88.
[5] ZHANG Rui, SONG Shiji, WU Cheng. A hybrid artificial bee colony algorithm for the job shop scheduling problem[J]. International journal of production economics, 2013, 141(1): 167-178.
[6] ZHANG Shuzhu, LEE C K M, CHOY K L, et al. Design and development of a hybrid artificial bee colony algorithm for the environmental vehicle routing problem[J]. Transportation research part D, 2014, 31: 85-89.
[7] ADARYANI M R, KARAMI A. Artificial bee colony algorithm for solving multi-objective optimal power flow problem[J]. International journal of electrical power & energy systems, 2013, 53: 219-230.
[8] 匡芳君, 徐蔚鸿, 金忠. 自适应Tent混沌搜索的人工蜂群算法[J]. 控制理论与应用, 2014, 31(11): 1502-1509. KUANG Fangjun, XU Weihong, JIN Zhong. Artificial bee colony algorithm based on self-adaptive Tent chaos search[J]. Control theory & applications, 2014, 31(11): 1502-1509.
[9] ALIZADEGAN A, ASADY B, AHMADPOUR M. Two modified versions of artificial bee colony algorithm[J]. Applied mathematics and computation, 2013, 225: 601-609.
[10] LIAO Xiang, ZHOU Jianzhong, OUYANG Shuo, et al. An adaptive chaotic artificial bee colony algorithm for short-term hydrothermal generation scheduling[J]. International journal of electrical power & energy systems, 2013, 53: 34-42.
[11] GAO Weifeng, LIU Sanyang, HUANG Lingling. Enhancing artificial bee colony algorithm using more information-based search equations[J]. Information sciences, 2014, 270: 112-133.
[12] 李国亮, 魏振华, 徐蕾. 分阶段搜索的改进人工蜂群算法[J]. 计算机应用, 2015, 35(4): 1057-1061. LI Guoliang, WEI Zhenhua, XU Lei. Improved artificial bee colony algorithm using phased search[J]. Journal of computer applications, 2015, 35(4): 1057-1061.
[13] BABAYIGIT B, OZDEMIR R. A modified artificial bee colony algorithm for numerical function optimization[C]//Proceedings of IEEE Symposium on Computers and Communications. Cappadocia: IEEE, 2012: 245-249.
[14] GAO Weifeng, LIU Sanyang. A modified artificial bee colony algorithm[J]. Computers & operations research, 2012, 39(3): 687-697.
[15] 高卫峰, 刘三阳, 黄玲玲. 受启发的人工蜂群算法在全局优化问题中的应用[J]. 电子学报, 2012, 40(12): 2396-2403. GAO Weifeng, LIU Sanyang, HUANG Lingling. Inspired artificial bee colony algorithm for global optimization problem[J]. Acta electronica sinica, 2012, 40(12): 2396-2403.
[16] 刘三阳, 张平, 朱明敏. 基于局部搜索的人工蜂群算法[J]. 控制与决策, 2014, 29(1): 123-128. LIU Sanyang, ZHANG Ping, ZHU Mingmin. Artificial bee colony algorithm based on local search[J]. Control and decision, 2014, 29(1): 123-128.

相似文献/References:

[1]康 琦,汪 镭,刘小莉,等.基于群体智能框架理念的遗传算法总体模式描述[J].智能系统学报编辑部,2007,2(05):42.
 KANG Qi,WANG Lei,LIU Xiao-li,et al.General mode description genetic algorithms based on a framework of swarm intelligence[J].CAAI Transactions on Intelligent Systems,2007,2(2):42.
[2]杨东升,康 琦,刘 波,等.面向生产系统的残次品主次成因的群体智能分析[J].智能系统学报编辑部,2009,4(06):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
 YANG Dong-sheng,KANG Qi,LIU Bo,et al.Swarm intelligence analysis of primary and secondary causes of defective products for manufacturing system[J].CAAI Transactions on Intelligent Systems,2009,4(2):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
[3]刘敏,邹杰,冯星,等.人工蜂群算法的无人机航路规划与平滑[J].智能系统学报编辑部,2011,6(04):344.
 LIU Min,ZOU Jie,FENG Xing,et al.Smooth trajectory planning of an unmanned aerial vehicleusing an artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2011,6(2):344.
[4]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报编辑部,2015,10(01):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10(2):1.[doi:10.3969/j.issn.1673-4785.201403072]
[5]高珊,马良,张惠珍.基于人工蜂群算法的电子商务多Agent自动谈判模型[J].智能系统学报编辑部,2015,10(03):476.[doi:10.3969/j.issn.1673-4785.201405023]
 GAO Shan,MA Liang,ZHANG Huizhen.Multi-Agent automated negotiation model for E-commerce based on the artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(2):476.[doi:10.3969/j.issn.1673-4785.201405023]
[6]彭晓华,刘利强.混沌搜索策略的改进人工蜂群算法[J].智能系统学报编辑部,2015,10(6):927.[doi:10.11992/tis.201507032]
 PENG Xiaohua,LIU Liqiang.Improved artificial bee colony algorithm based on chaos searching strategy[J].CAAI Transactions on Intelligent Systems,2015,10(2):927.[doi:10.11992/tis.201507032]
[7]张平,刘三阳,朱明敏.基于人工蜂群算法的贝叶斯网络结构学习[J].智能系统学报编辑部,2014,9(03):325.[doi:10.3969/j.issn.1673-4785.201310014]
 ZHANG Ping,LIU Sanyang,ZHU Mingmin.Structure learning of Bayesian networks by use of the artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(2):325.[doi:10.3969/j.issn.1673-4785.201310014]
[8]刘永波.投资组合优化的可行性规则人工蜂群算法[J].智能系统学报编辑部,2014,9(04):491.[doi:10.3969/j.issn.1673-4785.201308047]
 LIU Yongbo.An artificial bee colony algorithm with the feasibility rulefor portfolio investment optimizations[J].CAAI Transactions on Intelligent Systems,2014,9(2):491.[doi:10.3969/j.issn.1673-4785.201308047]
[9]谭营,郑少秋.烟花算法研究进展[J].智能系统学报编辑部,2014,9(05):515.[doi:10.3969/j.issn.1673-4785.201409010]
 TAN Ying,ZHENG Shaoqiu.Recent advances in fireworks algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(2):515.[doi:10.3969/j.issn.1673-4785.201409010]
[10]刘晓芳,柳培忠,骆炎民,等.一种增强局部搜索能力的改进人工蜂群算法[J].智能系统学报编辑部,2017,12(05):684.[doi:10.11992/tis.201612026]
 LIU Xiaofang,LIU Peizhong,LUO Yanmin,et al.Improved artificial bee colony algorithm based on enhanced local search[J].CAAI Transactions on Intelligent Systems,2017,12(2):684.[doi:10.11992/tis.201612026]
[11]秦全德,程适,李丽,等.人工蜂群算法研究综述[J].智能系统学报编辑部,2014,9(02):127.[doi:10.3969/j.issn.1673-4785.201309064]
 QIN Quande,CHENG Shi,LI Li,et al.Artificial bee colony algorithm: a survey[J].CAAI Transactions on Intelligent Systems,2014,9(2):127.[doi:10.3969/j.issn.1673-4785.201309064]

备注/Memo

备注/Memo:
收稿日期:2015-6-15;改回日期:。
基金项目:国家自然科学基金项目(61573167);高等学校博士学科点专项科研基金项目(20130093110011);江苏省自然科学基金项目(BK20141114).
作者简介:陈杰,男,1992年生,硕士研究生,主要研究方向为智能算法及应用;沈艳霞,女,1973年生,教授,博士,主要研究方向为群智能算法、风电系统优化等。发表学术论文70余篇,授权国家发明专利6项。主持或参与国家自然科学基金3项,省部级重点项目8项;陆欣,男,1990年生,硕士研究生,主要研究方向为群智能算法及其在风电系统中的应用。
通讯作者:沈艳霞.E-mail:shenyx@jiangnan.edu.cn.
更新日期/Last Update: 1900-01-01