[1]赵燕伟,朱芬,桂方志,等.基于可拓距的改进k-means聚类算法[J].智能系统学报,2020,15(2):344-351.[doi:10.11992/tis.201811020]
 ZHAO Yanwei,ZHU Fen,GUI Fangzhi,et al.Improved k-means algorithm based on extension distance[J].CAAI Transactions on Intelligent Systems,2020,15(2):344-351.[doi:10.11992/tis.201811020]
点击复制

基于可拓距的改进k-means聚类算法

参考文献/References:
[1] 于佐军, 秦欢. 基于改进蜂群算法的k-means算法[J]. 控制与决策, 2018, 33(1): 181-185
YU Zuojun, QIN Huan. k-means algorithm based on improved artificial bee colony algorithm[J]. Control and decision, 2018, 33(1): 181-185
[2] HE Hong, TAN Yonghong. Automatic pattern recognition of ECG signals using entropy-based adaptive dimensionality reduction and clustering[J]. Applied soft computing, 2017, 55: 238-252.
[3] PENG Chong, KANG Zhao, XU Fei, et al. Image projection ridge regression for subspace clustering[J]. IEEE signal processing letters, 2017, 24(7): 991-995.
[4] R?THLISBERGER V, ZISCHG A P, KEILER M, et al. Identifying spatial clusters of flood exposure to support decision making in risk management[J]. Science of the total environment, 2017, 598: 593-603.
[5] 何熊熊, 管俊轶, 叶宣佐, 等. 一种基于密度和网格的簇心可确定聚类算法[J]. 控制与决策, 2017, 32(5): 913-919
HE Xiongxiong, GUAN Junyi, YE Xuanzuo, et al. A density-based and grid-based cluster centers determination clustering algorithm[J]. Control and decision, 2017, 32(5): 913-919
[6] 李亚, 刘丽平, 李柏青, 等. 基于改进K-Means聚类和BP神经网络的台区线损率计算方法[J]. 中国电机工程学报, 2016, 36(17): 4543-4551
LI Ya, LIU Liping, LI Baiqing, et al. Calculation of line loss rate in transformer district based on improved K-Means clustering algorithm and BP neural network[J]. Proceedings of the CSEE, 2016, 36(17): 4543-4551
[7] 邢长征, 谷浩. 基于平均密度优化初始聚类中心的k-means算法[J]. 计算机工程与应用, 2014, 50(20): 135-138
XING Changzheng, GU Hao. K-means algorithm based on average density optimizing initial cluster centre[J]. Computer engineering and applications, 2014, 50(20): 135-138
[8] 张天骐, 杨强, 宋玉龙, 等. 一种K-means改进算法的软扩频信号伪码序列盲估计[J]. 电子与信息学报, 2018, 40(1): 226-234
ZHANG Tianqi, YANG Qiang, SONG Yulong, et al. Blind estimation PN sequence in soft spread spectrum signal of improved K-means algorithm[J]. Journal of electronics & information technology, 2018, 40(1): 226-234
[9] 李晓瑜, 俞丽颖, 雷航, 等. 一种K-means改进算法的并行化实现与应用[J]. 电子科技大学学报, 2017, 46(1): 61-68
LI Xiaoyu, YU Liying, LEI Hang, et al. The parallel implementation and application of an improved K-means algorithm[J]. Journal of University of Electronic Science and Technology of China, 2017, 46(1): 61-68
[10] TZORTZIS G, LIKAS A. The MinMax k-means clustering algorithm[J]. Pattern recognition, 2014, 47(7): 2505-2516.
[11] ABUALIGAH L M, KHADER A T, AI-BETAR M A. Unsupervised feature selection technique based on harmony search algorithm for improving the text clustering[C]//Proceedings of the 7th International Conference on Computer Science and Information Technology. Amman, Jordan, 2016: 1-6.
[12] LI Yanyan, WANG Qing, CHEN Jianping, et al. K-means algorithm based on particle swarm optimization for the identification of rock discontinuity sets[J]. Rock mechanics and rock engineering, 2015, 48(1): 375-385.
[13] KHANMOHAMMADI S, ADIBEIG N, SHANEHBANDY S. An improved overlapping k-means clustering method for medical applications[J]. Expert systems with applications, 2017, 67: 12-18.
[14] 杨春燕, 蔡文. 可拓学[M]. 北京: 科学出版社, 2014.
[15] 管凤旭. 基于流形学习及可拓分类器的手指静脉识别研究[D]. 哈尔滨: 哈尔滨工程大学, 2010.
GUAN Fengxu. Research on finger vein recognition based on manifold learning and extension classifier[D]. Harbin: Harbin Engineering University, 2010.
[16] 赵燕伟, 苏楠, 张峰, 等. 基于可拓实例推理的产品族配置设计方法[J]. 机械工程学报, 2010, 46(15): 146-154
ZHAO Yanwei, SU Nan, ZHANG Feng, et al. Configuration design method for product family based on extension case reasoning[J]. Journal of mechanical engineering, 2010, 46(15): 146-154
[17] 叶永伟, 张帆, 王运. 基于可拓距的起重机产品配置方法设计[J]. 中国制造业信息化, 2012, 41(23): 24-27
YE Yongwei, ZHANG Fan, WANG Yun. The crane products configuration design based on extension distance[J]. Manufacturing information engineering of China, 2012, 41(23): 24-27
[18] NOUAOURIA N, BOUKADOUM M. Case retrieval with combined adaptability and similarity criteria: application to case retrieval nets[C]//Proceedings of the 18th International Conference on Case-Based Reasoning. Research and Development. Alessandria, Italy, 2010: 242-256.
[19] 赵燕伟, 任设东, 陈尉刚, 等. 基于改进BP神经网络的可拓分类器构建[J]. 计算机集成制造系统, 2015, 21(10): 2807-2815
ZHAO Yanwei, REN Shedong, CHEN Weigang, et al. Extension classifier construction based on improved BP neural network[J]. Computer integrated manufacturing systems, 2015, 21(10): 2807-2815
[20] 李敏. K-means算法的改进及其在文本聚类中的应用研究[D]. 无锡: 江南大学, 2018.
LI Min. The research and application of text clustering based on improved K-means algorithm[D]. Wuxi: Jiangnan University, 2018.
[21] 杨明极, 马池, 王娅, 等. 一种改进K-means聚类的FCMM算法[J]. 计算机应用研究, 2019, 36(7): 2007-2010
YANG Mingji, MA Chi, WANG Ya, et al. Algorithm named FCMM to improve K-means clustering algorithm[J]. Application research of computers, 2019, 36(7): 2007-2010
[22] 韩俊, 谈健, 黄河, 等. 基于改进K-means聚类算法的供电块划分方法[J]. 电力自动化设备, 2015, 35(6): 123-129
HAN Jun, TAN Jian, HUANG He, et al. Power-supplying block partition based on improved K-means clustering algorithm[J]. Electric power automation equipment, 2015, 35(6): 123-129
[23] 李武, 赵娇燕, 严太山. 基于平均差异度优选初始聚类中心的改进K-均值聚类算法[J]. 控制与决策, 2017, 32(4): 759-762
LI Wu, ZHAO Jiaoyan, YAN Taishan. Improved K-means clustering algorithm optimizing initial clustering centers based on average difference degree[J]. Control and decision, 2017, 32(4): 759-762
相似文献/References:
[1]冯柳伟,常冬霞,邓勇,等.最近最远得分的聚类性能评价指标[J].智能系统学报,2017,12(1):67.[doi:10.11992/tis.201611007]
 FENG Liuwei,CHANG Dongxia,DENG Yong,et al.A clustering evaluation index based on the nearest and furthest score[J].CAAI Transactions on Intelligent Systems,2017,12():67.[doi:10.11992/tis.201611007]

备注/Memo

收稿日期:2018-11-26。
基金项目:国家自然科学基金项目(51875524);浙江省公益技术应用研究计划项目(2017C31072)
作者简介:赵燕伟,教授,博士生导师,博士,主要研究方向为可拓设计理论与方法、物流系统智能配送与优化调度、数字化产品现代设计。出版教材4部,多次获得国家自然基金项目资助等。发表学术论文100余篇;朱芬,硕士研究生,主要研究方向为可拓设计;桂方志,博士研究生,主要研究方向为可拓设计
通讯作者:赵燕伟(1959-).E-mail:ywz@zjut.edu.cn

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134