ZHU Juntao,CHEN Qiang.Improvement of kinect performance in RGB-D visual odometer[J].CAAI Transactions on Intelligent Systems,2020,15(5):943-948.[doi:10.11992/tis.201903007]





Improvement of kinect performance in RGB-D visual odometer
朱俊涛 陈强
上海工程技术大学 电子电气工程学院,上海 201600
ZHU Juntao CHEN Qiang
Electrical and Electronic Engineering College, Shanghai University of Engineering and Technology, Shanghai 201600, China
kinectlack of depthfusion algorithmfeature pointsiterative closest pointperspective-n-pointdepth valuepose estimationBA optimization modelg2o
针对RGB-D视觉里程计中kinect相机所捕获的图像深度区域缺失的问题,提出了一种基于PnP(perspective-n-point)和ICP(iterative closest point)的融合优化算法。传统ICP算法迭代相机位姿时由于深度缺失,经常出现特征点丢失导致算法无法收敛或误差过大。本算法通过对特征点的深度值判定,建立BA优化模型,并利用g2o求解器进行特征点与相机位姿的优化。实验证明了该方法的有效性,提高了相机位姿估计的精度及算法的收敛成功率,从而提高了RGB-D视觉里程计的精确性和鲁棒性。
Kinect is a 3D camera that gives you the depth values associated with every pixel. It uses structured infrared light to determine depth values. Apart from these, you also have access to raw RGB-D data, and even the raw infrared data. Aiming to solve the problem of insufficient depth values for the images captured by Kinect camera in RGB-D visual odometer, we propose a fusion optimization algorithm based on Perspective-n-Point and iterative closest point (ICP). Because of the lack of depth values, traditional ICP algorithm often loses feature points when iterating the camera pose; this results in excessive error, or we can say that the algorithm is unable to converge. This algorithm establishes bat algorithm optimization model by judging the depth of feature points and optimizes the feature point of poses and camera using g2o solver. Experiments show that the method is effective and improves the accuracy of camera pose estimation and the convergence success rate of the algorithm, thus improving the accuracy and robustness of RGB-D visual odometer.


[1] SCARAMUZZA D, FRAUNDORFER F. Visual odometry: part I: the first 30 years and fundamentals[J]. IEEE robotics & automation magazine, 2011, 18(4): 80-92.
[2] H?NE C, HENG L, LEE G H, et al. 3D visual perception for self-driving cars using a multi-camera system: calibration, mapping, localization, and obstacle detection[J]. Image and vision computing, 2017, 68: 14-27.
[3] STEINBRüCKER F, STURM J, CREMERS D. Real-time visual odometry from dense RGB-D images[C]//Proceedings of 2011 IEEE International Conference on Computer Vision Workshops. Barcelona, Spain: 2011: 719-722.
[4] NG P C, HENIKOFF S. SIFT: predicting amino acid changes that affect protein function[J]. Nucleic acids research, 2003, 31(13): 3812-3814.
[5] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer vision and image understanding, 2008, 110(3): 346-359.
[6] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: 2011: 2564-2571.
[7] BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE transactions on pattern analysis and machine intelligence, 1992, 14(2): 239-256.
[8] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[9] ROSTEN E, PORTER R, DRUMMOND T. Faster and better: a machine learning approach to corner detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(1): 105-119.
[10] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features[C]//Proceeding of the 11th European Conference on Computer Vision. Heraklion: Springer, 2010: 778-792.
[11] 翟紫伶. 基于高斯尺度空间理论的ORB特征点检测[J]. 电子世界, 2016(10): 192-194
[12] 葛山峰, 于莲芝, 谢振. 基于ORB特征的目标跟踪算法[J]. 电子科技, 2017, 30(2): 98-100, 104
GE Shanfeng, YU Lianzhi, XIE Zhen. A target tracking algorithm based on ORB[J]. Electronic science and technology, 2017, 30(2): 98-100, 104
[13] 邢凯盛, 凌有铸, 陈孟元. ORB特征匹配的误匹配点剔除算法研究[J]. 电子测量与仪器学报, 2016, 30(8): 1255-1262
XING Kaisheng, LING Youzhu, CHEN Mengyuan. Mismatching points elimination algorithm for ORB feature matching[J]. Journal of electronic measurement and instrumentation, 2016, 30(8): 1255-1262
[14] STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal, 2012: 573-580.
[15] KERL C, STURM J, CREMERS D. Dense visual SLAM for RGB-D cameras[C]//Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan, 2013: 2100-2106.
[16] 高翔, 张涛. 视觉SLAM十四讲[M]. 北京: 电子工业出版社, 2017: 72-76.


 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8(5):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HE Chao,LIU Huaping,SUN Fuchun,et al.Target tracking and obstacle avoidance of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2013,8(5):426.[doi:10.3969/j.issn.1673-4785.201301028]
 LEI Lichong,LIU Huaping,SUN Fuchun,et al.Visual object recognition for smart manipulation[J].CAAI Transactions on Intelligent Systems,2015,10(5):37.[doi:10.3969/j.issn.1673-4785.201311050]
 LIN Haibo,WANG Hao,ZHANG Yi.Human postures recognition based on the improved Gauss kernel function[J].CAAI Transactions on Intelligent Systems,2015,10(5):436.[doi:10.3969/j.issn.1673-4785.201405049]
 ZHANG Xuehua,LIU Huaping,SUN Fuchun,et al.Target tracking of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2014,9(5):34.[doi:10.3969/j.issn.1673-4785.201305080]
 ZHANG Xuehua,LIU Huaping,SUN Fuchun,et al.Kinect-based dobby coordinate operating system[J].CAAI Transactions on Intelligent Systems,2014,9(5):307.[doi:10.3969/j.issn.1673-4785.201308019]
 CAI Jun,CHEN Keyu,ZHANG Yi.Improved V-SLAM for mobile robots based on Kinect[J].CAAI Transactions on Intelligent Systems,2018,13(5):734.[doi:10.11992/tis.201705018]


更新日期/Last Update: 2021-01-15