[1]朱俊涛,陈强.基于kinect的改进RGB-D视觉里程计[J].智能系统学报,2020,15(5):943-948.[doi:10.11992/tis.201903007]
 ZHU Juntao,CHEN Qiang.Improvement of kinect performance in RGB-D visual odometer[J].CAAI Transactions on Intelligent Systems,2020,15(5):943-948.[doi:10.11992/tis.201903007]
点击复制

基于kinect的改进RGB-D视觉里程计(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年5期
页码:
943-948
栏目:
学术论文—机器感知与模式识别
出版日期:
2020-09-05

文章信息/Info

Title:
Improvement of kinect performance in RGB-D visual odometer
作者:
朱俊涛 陈强
上海工程技术大学 电子电气工程学院,上海 201600
Author(s):
ZHU Juntao CHEN Qiang
Electrical and Electronic Engineering College, Shanghai University of Engineering and Technology, Shanghai 201600, China
关键词:
kinect深度丢失融合算法特征点ICPPnP深度值位姿估计BA优化模型g2o
Keywords:
kinectlack of depthfusion algorithmfeature pointsiterative closest pointperspective-n-pointdepth valuepose estimationBA optimization modelg2o
分类号:
TP242.6
DOI:
10.11992/tis.201903007
文献标志码:
A
摘要:
针对RGB-D视觉里程计中kinect相机所捕获的图像深度区域缺失的问题,提出了一种基于PnP(perspective-n-point)和ICP(iterative closest point)的融合优化算法。传统ICP算法迭代相机位姿时由于深度缺失,经常出现特征点丢失导致算法无法收敛或误差过大。本算法通过对特征点的深度值判定,建立BA优化模型,并利用g2o求解器进行特征点与相机位姿的优化。实验证明了该方法的有效性,提高了相机位姿估计的精度及算法的收敛成功率,从而提高了RGB-D视觉里程计的精确性和鲁棒性。
Abstract:
Kinect is a 3D camera that gives you the depth values associated with every pixel. It uses structured infrared light to determine depth values. Apart from these, you also have access to raw RGB-D data, and even the raw infrared data. Aiming to solve the problem of insufficient depth values for the images captured by Kinect camera in RGB-D visual odometer, we propose a fusion optimization algorithm based on Perspective-n-Point and iterative closest point (ICP). Because of the lack of depth values, traditional ICP algorithm often loses feature points when iterating the camera pose; this results in excessive error, or we can say that the algorithm is unable to converge. This algorithm establishes bat algorithm optimization model by judging the depth of feature points and optimizes the feature point of poses and camera using g2o solver. Experiments show that the method is effective and improves the accuracy of camera pose estimation and the convergence success rate of the algorithm, thus improving the accuracy and robustness of RGB-D visual odometer.

参考文献/References:

[1] SCARAMUZZA D, FRAUNDORFER F. Visual odometry: part I: the first 30 years and fundamentals[J]. IEEE robotics & automation magazine, 2011, 18(4): 80-92.
[2] H?NE C, HENG L, LEE G H, et al. 3D visual perception for self-driving cars using a multi-camera system: calibration, mapping, localization, and obstacle detection[J]. Image and vision computing, 2017, 68: 14-27.
[3] STEINBRüCKER F, STURM J, CREMERS D. Real-time visual odometry from dense RGB-D images[C]//Proceedings of 2011 IEEE International Conference on Computer Vision Workshops. Barcelona, Spain: 2011: 719-722.
[4] NG P C, HENIKOFF S. SIFT: predicting amino acid changes that affect protein function[J]. Nucleic acids research, 2003, 31(13): 3812-3814.
[5] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer vision and image understanding, 2008, 110(3): 346-359.
[6] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain: 2011: 2564-2571.
[7] BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE transactions on pattern analysis and machine intelligence, 1992, 14(2): 239-256.
[8] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
[9] ROSTEN E, PORTER R, DRUMMOND T. Faster and better: a machine learning approach to corner detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(1): 105-119.
[10] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features[C]//Proceeding of the 11th European Conference on Computer Vision. Heraklion: Springer, 2010: 778-792.
[11] 翟紫伶. 基于高斯尺度空间理论的ORB特征点检测[J]. 电子世界, 2016(10): 192-194
[12] 葛山峰, 于莲芝, 谢振. 基于ORB特征的目标跟踪算法[J]. 电子科技, 2017, 30(2): 98-100, 104
GE Shanfeng, YU Lianzhi, XIE Zhen. A target tracking algorithm based on ORB[J]. Electronic science and technology, 2017, 30(2): 98-100, 104
[13] 邢凯盛, 凌有铸, 陈孟元. ORB特征匹配的误匹配点剔除算法研究[J]. 电子测量与仪器学报, 2016, 30(8): 1255-1262
XING Kaisheng, LING Youzhu, CHEN Mengyuan. Mismatching points elimination algorithm for ORB feature matching[J]. Journal of electronic measurement and instrumentation, 2016, 30(8): 1255-1262
[14] STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal, 2012: 573-580.
[15] KERL C, STURM J, CREMERS D. Dense visual SLAM for RGB-D cameras[C]//Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan, 2013: 2100-2106.
[16] 高翔, 张涛. 视觉SLAM十四讲[M]. 北京: 电子工业出版社, 2017: 72-76.

相似文献/References:

[1]韩峥,刘华平,黄文炳,等.基于Kinect的机械臂目标抓取[J].智能系统学报,2013,8(02):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8(5):149.[doi:10.3969/j.issn.1673-4785.201212038]
[2]贺超,刘华平,孙富春,等.采用Kinect的移动机器人目标跟踪与避障[J].智能系统学报,2013,8(05):426.[doi:10.3969/j.issn.1673-4785.201301028]
 HE Chao,LIU Huaping,SUN Fuchun,et al.Target tracking and obstacle avoidance of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2013,8(5):426.[doi:10.3969/j.issn.1673-4785.201301028]
[3]雷丽充,刘华平,孙富春,等.面向灵巧操作的视觉目标识别[J].智能系统学报,2015,10(01):37.[doi:10.3969/j.issn.1673-4785.201311050]
 LEI Lichong,LIU Huaping,SUN Fuchun,et al.Visual object recognition for smart manipulation[J].CAAI Transactions on Intelligent Systems,2015,10(5):37.[doi:10.3969/j.issn.1673-4785.201311050]
[4]林海波,王浩,张毅.改进高斯核函数的人体姿态分析与识别[J].智能系统学报,2015,10(03):436.[doi:10.3969/j.issn.1673-4785.201405049]
 LIN Haibo,WANG Hao,ZHANG Yi.Human postures recognition based on the improved Gauss kernel function[J].CAAI Transactions on Intelligent Systems,2015,10(5):436.[doi:10.3969/j.issn.1673-4785.201405049]
[5]张雪华,刘华平,孙富春,等.采用Kinect的移动机器人目标跟踪[J].智能系统学报,2014,9(01):34.[doi:10.3969/j.issn.1673-4785.201305080]
 ZHANG Xuehua,LIU Huaping,SUN Fuchun,et al.Target tracking of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2014,9(5):34.[doi:10.3969/j.issn.1673-4785.201305080]
[6]张雪华,刘华平,孙富春,等.采用Kinect的多臂协调操作系统[J].智能系统学报,2014,9(03):307.[doi:10.3969/j.issn.1673-4785.201308019]
 ZHANG Xuehua,LIU Huaping,SUN Fuchun,et al.Kinect-based dobby coordinate operating system[J].CAAI Transactions on Intelligent Systems,2014,9(5):307.[doi:10.3969/j.issn.1673-4785.201308019]
[7]蔡军,陈科宇,张毅.基于Kinect的改进移动机器人视觉SLAM[J].智能系统学报,2018,13(05):734.[doi:10.11992/tis.201705018]
 CAI Jun,CHEN Keyu,ZHANG Yi.Improved V-SLAM for mobile robots based on Kinect[J].CAAI Transactions on Intelligent Systems,2018,13(5):734.[doi:10.11992/tis.201705018]

备注/Memo

备注/Memo:
收稿日期:2019-03-09。
基金项目:国家自然科学基金项目(61272097);上海市科技委员会重点项目(18511101600)
作者简介:朱俊涛,硕士研究生,主要研究方向为机器人;陈强,教授,主要研究方向为城市管网探测理论与方法、仪器设备研发与应用。获得多项省部级科技进步奖与科技成果。发表学术论文50余篇
通讯作者:陈强.E-mail:sues_chen@sues.edu.cn
更新日期/Last Update: 2021-01-15