[1]伍锡如,雪刚刚.基于图像聚类的交通标志CNN快速识别算法[J].智能系统学报,2019,14(04):670-678.[doi:10.11992/tis.201806026]
 WU Xiru,XUE Ganggang.CNN-based image clustering algorithm for fast recognition of traffic signs[J].CAAI Transactions on Intelligent Systems,2019,14(04):670-678.[doi:10.11992/tis.201806026]
点击复制

基于图像聚类的交通标志CNN快速识别算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年04期
页码:
670-678
栏目:
出版日期:
2019-07-02

文章信息/Info

Title:
CNN-based image clustering algorithm for fast recognition of traffic signs
作者:
伍锡如12 雪刚刚12
1. 桂林电子科技大学 电子工程与自动化学院, 广西 桂林 541004;
2. 桂林电子科技大学 广西自动检测重点实验室, 广西 桂林 541004
Author(s):
WU Xiru12 XUE Ganggang12
1. College of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China;
2. Guangxi Key Laboratory of Automatic Detection, Guilin University of Electronic Technology, Guilin 541004, China
关键词:
交通标志模式识别图像预处理图像聚类样本优化深度学习卷积神经网络智能汽车
Keywords:
traffic signpattern recognitionimage preprocessingimage clusteringsample optimizationdeep learningconvolutional neural networkintelligent vehicle
分类号:
TP391.4
DOI:
10.11992/tis.201806026
摘要:
为了提高交通标志图像识别的准确性和实时性,提出一种基于图像聚类的交通标志CNN快速识别算法。利用图像聚类算法对原始数据集进行样本优化;采用多种图像预处理操作使样本整体质量进一步提升;构造了深度为9的CNN结构,通过多次训练得到最终的网络模型,将待识别的图像输入到CNN模型来实现自动识别。在德国交通标志数据集(German traffic sign recognition benchmark, GTSRB)和比利时交通标志数据集(Belgium traffic sign dataset, BTSD)上证明了算法的有效性,单张图片的识别速度只需0.2 s,识别精度高达98.5%以上。本算法具有识别速度快、准确率高的特点,可为智能驾驶的可靠性和安全性提供理论依据和技术支持。
Abstract:
To improve the accuracy and real-time performance of traffic signs recognition, a convolutional neural network (CNN)-based image clustering algorithm is proposed for fast recognition of traffic signs. First, The image clustering algorithm was used to optimize the original dataset; second, the overall quality of the dataset was further improved through various image preprocessing operations; finally, a nine-layer CNN structure was constructed. The CNN model was eventually obtained after several sample trainings, and an image was inputted into the CNN model for automatic recognition. The validity of the algorithm was proved based on the German traffic sign recognition benchmark (GTSRB) and Belgium traffic sign dataset (BTSD). The recognition time of a single picture was only 0.2 s, and the recognition accuracy was higher than 98.5%. The results confirm fast recognition and high accuracy rate of the proposed algorithm. It provides theoretical basis and technical support for the reliability and security of intelligent vehicle driving.

参考文献/References:

[1] SAADNA Y, BEHLOUL A. An overview of traffic sign detection and classification methods[J]. International journal of multimedia information retrieval, 2017, 6(3):193-210.
[2] BERKAYA S K, GUNDUZ H, OZSEN O, et al. On circular traffic sign detection and recognition[J]. Expert systems with applications, 2016, 48:67-75.
[3] HOFERLIN B, ZIMMERMANN K. Towards reliable traffic sign recognition[C]//2009 IEEE Intelligent Vehicles Symposium. Xi’an, China, 2009:324-329.
[4] 张卡, 盛业华, 叶春, 等. 基于中心投影形状特征的车载移动测量系统交通标志自动识别[J]. 仪器仪表学报, 2010, 31(9):2101-2108 ZHANG Ka, SHENG Yehua, YE Chun, et al. Automatic recognition of road traffic sign based on central projected shape feature for vehicle-borne mobile mapping system[J]. Chinese journal of scientific instrument, 2010, 31(9):2101-2108
[5] LU Ke, DING Zhengming, GE S. Sparse-representation-based graph embedding for traffic sign recognition[J]. IEEE transactions on intelligent transportation systems, 2012, 13(4):1515-1524.
[6] 宋文杰, 付梦印, 杨毅. 一种面向无人驾驶汽车的高效交通标志识别方法[J]. 机器人, 2015, 37(1):102-111 SONG Wenjie, FU Mengyin, YANG Yi. An efficient traffic signs recognition method for autonomous vehicle[J]. Robot, 2015, 37(1):102-111
[7] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1554.
[8] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[9] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[10] 刘方园, 王水花, 张煜东. 深度置信网络模型及应用研究综述[J]. 计算机工程与应用, 2018, 54(1):11-18 LIU Fangyuan, WANG Shuihua, ZHANG Yudong. Survey on deep belief network model and its applications[J]. Computer engineering and applications, 2018, 54(1):11-18
[11] GOLOVKO V A. Deep learning:an overview and main paradigms[J]. Optical memory and neural networks, 2017, 26(1):1-17.
[12] 马志强, 李图雅, 杨双涛, 等. 基于深度神经网络的蒙古语声学模型建模研究[J]. 智能系统学报, 2018, 13(3):486-492 MA Zhiqiang, LI Tuya, YANG Shuangtao, et al. Mongolian acoustic modeling based on deep neural network[J]. CAAI transactions on intelligent systems, 2018, 13(3):486-492
[13] CIRE?AN D, MEIER U, MASCI J, et al. Multi-column deep neural network for traffic sign classification[J]. Neural networks, 2012, 32:333-338.
[14] 孙伟, 杜宏吉, 张小瑞, 等. 基于CNN多层特征和ELM的交通标志识别[J]. 电子科技大学学报, 2018, 47(3):343-349 SUN Wei, DU Hongji, ZHANG Xiaorui, et al. Traffic sign recognition method based on multi-layer feature CNN and extreme learning machine[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(3):343-349
[15] CHAWLA N V. Data mining for imbalanced datasets:An overview[M]//MAIMON O, ROKACH L. Data Mining and Knowledge Discovery Handbook. Boston, MA:Springer, 2005:853-867.
[16] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[17] MURTAGH F. A survey of recent advances in hierarchical clustering algorithms[J]. The computer journal, 1983, 26(4):354-359.
[18] PAL N R. A primer on cluster analysis:4 basic methods that (usually) work[book review] [J]. IEEE computational intelligence magazine, 2017, 12(4):98-100.
[19] ZAKLOUTA F, STANCIULESCU B. Real-time traffic-sign recognition using tree classifiers[J]. IEEE transactions on intelligent transportation systems, 2012, 13(4):1507-1514.
[20] SERMANET P, LECUN Y. Traffic sign recognition with multi-scale convolutional networks[C]//2011 International Joint Conference on Neural Networks. San Jose, CA, USA, 2011:2809-2813.

相似文献/References:

[1]程显毅,陈小波.基于多Agent的模式识别框[J].智能系统学报,2006,1(02):89.
 CHENG Xian-yi,CHEN Xiao-bo.Frame of pattern recognition based on multi-Agent[J].CAAI Transactions on Intelligent Systems,2006,1(04):89.
[2]杨静宇,郑宇杰.基于QR分解的鉴别维数压缩及其在人脸识别中的应用[J].智能系统学报,2007,2(06):48.
 YANG Jing-yu,ZHENG Yu-jie.Discriminant dimensionality reduction based on QR decomposition and its application in face recognition[J].CAAI Transactions on Intelligent Systems,2007,2(04):48.
[3]叶果,程洪,赵洋.电影中吸烟活动识别[J].智能系统学报,2011,6(05):440.
 YE Guo,CHENG Hong,ZHAO Yang.moking recognition in movies[J].CAAI Transactions on Intelligent Systems,2011,6(04):440.
[4]陈阳,覃鸿,李卫军,等.仿生模式识别技术研究与应用进展[J].智能系统学报,2016,11(1):1.[doi:10.11992/tis.201506011]
 CHEN Yang,QIN Hong,LI Weijun,et al.Progress in research and application of biomimetic pattern recognition technology[J].CAAI Transactions on Intelligent Systems,2016,11(04):1.[doi:10.11992/tis.201506011]
[5]杨钟亮,陈育苗.基于GGA-Elman网络的头部体态语言sEMG识别[J].智能系统学报,2014,9(04):385.[doi:10.3969/j.issn.1673-4785.201310047]
 YANG Zhongliang,CHEN Yumiao.An sEMG approach to recognize the body language of the head based on the GGA-Elman network[J].CAAI Transactions on Intelligent Systems,2014,9(04):385.[doi:10.3969/j.issn.1673-4785.201310047]
[6]李欢,王士同.支持向量机的多观测样本二分类算法[J].智能系统学报,2014,9(04):392.[doi:10.3969/j.issn.1673-4785.201312040]
 LI Huan,WANG Shitong.Binary-class classification algorithm with multiple-access acquired objects based on the SVM[J].CAAI Transactions on Intelligent Systems,2014,9(04):392.[doi:10.3969/j.issn.1673-4785.201312040]
[7]倪怀发,沈肖波,孙权森.基于低秩分解的鲁棒典型相关分析[J].智能系统学报,2017,12(04):491.[doi:10.11992/tis.201607024]
 NI Huaifa,SHEN Xiaobo,SUN Quansen.Robust canonical correlation analysis based onlow rank decomposition[J].CAAI Transactions on Intelligent Systems,2017,12(04):491.[doi:10.11992/tis.201607024]
[8]李德毅.AI——人类社会发展的加速器[J].智能系统学报,2017,12(05):583.[doi:10.11992/tis.201710016]
 LI Deyi.Artificial intelligence:an accelerator for the development of human society[J].CAAI Transactions on Intelligent Systems,2017,12(04):583.[doi:10.11992/tis.201710016]
[9]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(03):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13(04):366.[doi:10.11992/tis.201706040]
[10]冯小荣,惠康华,柳振东.基于卷积特征和贝叶斯分类器的人脸识别[J].智能系统学报,2018,13(05):769.[doi:10.11992/tis.201706052]
 FENG Xiaorong,HUI Kanghua,LIU Zhendong.Face recognition based on convolution feature and Bayes classifier[J].CAAI Transactions on Intelligent Systems,2018,13(04):769.[doi:10.11992/tis.201706052]

备注/Memo

备注/Memo:
收稿日期:2018-06-12。
基金项目:国家自然科学基金项目(61603107,61863007);省部共建药用资源化学与药物分子工程国家重点实验室项目(NCOC2016-B01);广西研究生教育创新计划项目(YCSW2017144);桂林电子科技大学研究生教育创新计划项目(2017YJCX88,2018YJCX76).
作者简介:伍锡如,男,1981年生,副教授,博士,主要研究方向为非线性系统控制、神经网络、机器人控制。参与国家863计划,参与或负责多个国家自然科学基金项目。获国家发明专利5项;雪刚刚,男,1992年生,硕士研究生,主要研究方向为深度学习、计算机视觉。
通讯作者:雪刚刚.E-mail:stayrealxue@163.com
更新日期/Last Update: 2019-08-25