[1]冯小荣,惠康华,柳振东.基于卷积特征和贝叶斯分类器的人脸识别[J].智能系统学报,2018,13(05):769-775.[doi:10.11992/tis.201706052]
 FENG Xiaorong,HUI Kanghua,LIU Zhendong.Face recognition based on convolution feature and Bayes classifier[J].CAAI Transactions on Intelligent Systems,2018,13(05):769-775.[doi:10.11992/tis.201706052]
点击复制

基于卷积特征和贝叶斯分类器的人脸识别(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年05期
页码:
769-775
栏目:
出版日期:
2018-09-05

文章信息/Info

Title:
Face recognition based on convolution feature and Bayes classifier
作者:
冯小荣 惠康华 柳振东
中国民航大学 计算机科学与技术学院, 天津 300300
Author(s):
FENG Xiaorong HUI Kanghua LIU Zhendong
School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
关键词:
人脸识别卷积神经网络模式识别深度学习贝叶斯分类器
Keywords:
face recognitionconvolutional neural networkpattern recognitiondeep learningBayes classifier
分类号:
TP393
DOI:
10.11992/tis.201706052
摘要:
为解决传统人脸识别算法特征提取困难的问题,提出了基于卷积特征和贝叶斯分类器的人脸识别方法,利用卷积神经网络提取人脸特征,通过主成分分析法对特征降维,最后利用贝叶斯分类器进行判别分类,在ORL(olivetti research laboratory)人脸库上进行实验,获得了99.00%的识别准确率。实验结果表明,卷积神经网络提取的人脸图像特征具有很强的辨识度,与PCA(principal component analysis)和贝叶斯分类器结合之后可有效提高人脸识别的准确率。
Abstract:
To solve the difficulty of feature extraction of the traditional face recognition algorithm, a new method based on convolution feature and Bayes classifier is proposed, which uses convolution neural network to extract facial features and principal component analysis (PCA) to reduce the feature dimension, and finally, employs a Bayes classifier to classify the features. Experiments were carried out on the ORL face database, and a recognition accuracy of 99% was achieved. The experimental results show that the face features extracted by the convolution neural network have a strong degree of recognition. Therefore, the accuracy of face recognition in feature extraction can be effectively improved by combining PCA and Bayes classifier with convolution neural network.

参考文献/References:

[1] 何春. 人脸识别技术综述[J]. 智能计算机与应用, 2016, 6(5):112-114 HE Chun. Survey of face recognition technology[J]. Intelligent computers and applications, 2016, 6(5):112-114
[2] 顼聪, 陶永鹏. 基于改进的LBP人脸识别算法的研究[J]. 微型机与应用, 2016, 35(23):18-20, 27 XU Cong, TAO Yongpeng. Research of face recognition algorithm based on improved LBP[J]. Microcomputer & its applications, 2016, 35(23):18-20, 27
[3] 李春利, 沈鲁娟. 基于改进LBP算子的纹理图像分类方法[J]. 计算机工程与设计, 2016, 37(1):232-236 LI Chunli, SHEN Lujuan. Texture image classification method based on improved LBP operator[J]. Computer engineering and design, 2016, 37(1):232-236
[4] SURHONE L M, TENNOE M T, HENSSONOW S F, et al. Histogram of oriented gradients[J]. Betascript publishing, 2016, 12(4):1368-1371.
[5] ZHANG Chunjie, LIU Jing, LIANG Chao, et al. Image classification using Harr-like transformation of local features with coding residuals[J]. Signal processing, 2013, 93(8):2111-2118.
[6] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, 2012:1097-1105.
[7] YU K, SALZMANN M. Second-order convolutional neural networks[J]. Clinical immunology & immunopathology, 2017, 66(3):230-238.
[8] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553):436-444.
[9] 张丹丹, 李雷. 基于PCANet-RF的人脸检测系统[J]. 计算机技术与发展, 2016, 26(2):31-34 ZHANG Dandan, LI Lei. Face detection system based on PCANet-RF[J]. Computer technology and development, 2016, 26(2):31-34
[10] 林江豪, 阳爱民, 周咏梅, 等. 一种基于朴素贝叶斯的微博情感分类[J]. 计算机工程与科学, 2012, 34(9):160-165 LIN Jianghao, YANG Aimin, ZHOU Yongmei, et al. Classification of microblog sentiment based on Naïve Bayesian[J]. Computer engineering and science, 2012, 34(9):160-165
[11] 许可. 卷积神经网络在图像识别上的应用的研究[D]. 杭州:浙江大学, 2012. XU Ke. Study of convolutional neural network applied on image recognition[D]. Hangzhou:Zhejiang University, 2012.
[12] 陈耀丹, 王连明. 基于卷积神经网络的人脸识别方法[J]. 东北师大学报:自然科学版, 2016, 48(2):70-76 CHEN Yaodan, WANG Lianming. Convolutional neural network for face recognition[J]. Journal of Northeast Normal University:Natural Science Edition, 2016, 48(2):70-76
[13] BEN Xianye, MENG Weixiao, WANG Kejun, et al. An adaptive neural networks formulation for the two-dimensional principal component analysis[J]. Neural computing and applications, 2016, 27(5):1245-1261.
[14] 柳振东. 卷积神经网络在图像分类中的研究与应用[D]. 天津:中国民航大学, 2017. LIU Zhendong. Research and application of convolution neural network in image classification[D]. Tianjin:Civil Aviation University of China, 2017.

相似文献/References:

[1]金一,阮秋琦.一种局部加权的二维主成分分析算法及其在人脸识别中的应用[J].智能系统学报,2007,2(03):25.
 JIN Yi,RUAN Qiu-qi.A partially weighted twodimensional PCA for face recognition[J].CAAI Transactions on Intelligent Systems,2007,2(05):25.
[2]任小龙,苏光大,相 燕.使用第2代身份证的人脸识别身份认证系统[J].智能系统学报,2009,4(03):213.
 REN Xiao-long,SU Guang-da,XIANG Yan.Face authentication system using the Chinese second generation identity card[J].CAAI Transactions on Intelligent Systems,2009,4(05):213.
[3]苏光大.多技术合力的人脸识别系统设计[J].智能系统学报,2009,4(06):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
 SU Guang-da.Face recognition system designed to integrate multiple techniques[J].CAAI Transactions on Intelligent Systems,2009,4(05):471.[doi:doi:10.3969/j.issn.1673-4785.2009.06.001]
[4]王科俊,邹国锋,张洁.SPCA参数对单样本人脸识别效果影响分析[J].智能系统学报,2011,6(06):531.
 WANG Kejun,ZOU Guofeng,ZHANG Jie.Analysis of the influence of SPCA parameters on the recognition of a single sample face[J].CAAI Transactions on Intelligent Systems,2011,6(05):531.
[5]杜吉祥,翟传敏,叶永青.使用稀疏约束非负矩阵分解算法的跨年龄人脸识别[J].智能系统学报,2012,7(03):271.
 DU Jixiang,ZHAI Chuanmin,YE Yongqing.An agespan face recognition method based on an NMF algorithm with sparseness constraints[J].CAAI Transactions on Intelligent Systems,2012,7(05):271.
[6]阮晓虎,李卫军,覃鸿,等.一种基于特征匹配的人脸配准判断方法[J].智能系统学报,2015,10(01):12.[doi:10.3969/j.issn.1673-4785.201312064]
 RUAN Xiaohu,LI Weijun,QIN Hong,et al.An assessment method for face alignment based on feature matching[J].CAAI Transactions on Intelligent Systems,2015,10(05):12.[doi:10.3969/j.issn.1673-4785.201312064]
[7]孙劲光,孟凡宇.一种特征加权融合人脸识别方法[J].智能系统学报,2015,10(6):912.[doi:10.11992/tis.201509025]
 SUN Jinguang,MENG Fanyu.Face recognition by weighted fusion of facial features[J].CAAI Transactions on Intelligent Systems,2015,10(05):912.[doi:10.11992/tis.201509025]
[8]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11(05):43.[doi:10.11992/tis.201509018]
[9]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11(05):279.[doi:10.11992/tis.201603026]
[10]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11(05):391.[doi:10.11992/tis.201603028]

备注/Memo

备注/Memo:
收稿日期:2017-06-13。
基金项目:国家自然科学基金项目(U1233113,61571441);中央高校基金项目(ZXH2012M005,3122014C016);中国民航大学科研启动基金项目(2010QD10X).
作者简介:冯小荣,男,1980年生,实验师,硕士研究生,主要研究方向为智能算法、图像处理。参与国家自然科学基金项目多项。发表学术论文 10余篇,其中被SCI、EI检索3篇;惠康华,男,1982年生,讲师,博士,主要研究方向为模式识别、计算机视觉、图像处理。参与国家自然科学基金项目多项。发表学术论文12篇,被SCI、EI检索6篇;柳振东,男,1992年生,硕士研究生,主要研究方向为模式识别、深度学习、图像处理。发表学术论文2篇。
通讯作者:惠康华.E-mail:khhui@cauc.edu.cn.
更新日期/Last Update: 2018-10-25