[1]杨静宇,郑宇杰.基于QR分解的鉴别维数压缩及其在人脸识别中的应用[J].智能系统学报,2007,2(6):48-53.
 YANG Jing-yu,ZHENG Yu-jie.Discriminant dimensionality reduction based on QR decomposition and its application in face recognition[J].CAAI Transactions on Intelligent Systems,2007,2(6):48-53.
点击复制

基于QR分解的鉴别维数压缩及其在人脸识别中的应用

参考文献/References:
[1] FUKUNAGA K. Introduction to statistical pattern recognition[M]. New York : Academic Press, 1990.
[2]DUDA R O,HART P E,STORK D G. Pattern classification[M]. 2nd ed. New Yo rk:John Wiley & Sons, 2001.
[3]BELHUMEUR P N,HESPANHA J P,KRIEGMAN D J. Eigenfaces vs fisherfaces: recogn it ion using class specific linear projection[J]. IEEE Trans Pattern Analysis an d Machine Intelligence, 1997, 19(7):711-720.
[4]COMON P. Independent component analysis—a new concept[J].Signal Process ing, 1994, 36(3):287-314.
[5]BARTLETT M S, MOVELLAN J R, SEJNOWSKI T J. Face recognition by independent c omponent analysis[J]. IEEE Transaction on Neural Network, 2002, 13(6):1450-146 4.
[6]HYVARINEN A. Fast and robust fixedpoint algorithm for independent compon ent analysis[J]. IEEE Transaction on Neural Network, 1999, 10(3):626-634.
[7]YANG Jian, ZHANG David, YANG Jingyu. Is ICA significantly better than PCA for face recognition[A]. ICCV 2005[C].[S.l.],2005.
[8]SCHOLKOPF B,SMOLA A,MULLER K R, et al. Nonlinear component analysis as a k ernel eigenvalue problem[J]. Neural Computation. 1998, 10(5):1299-1319.
[9]SCHOLKOPF B,MIKA S,BURGES C. Input space vs feature space in kernelbase d methods[J]. IEEE Trans on Neural Networks, 1999, 10(5):1000-1017.
[10]SMOLA A J, MIKA S,SCHOLKOPF B, et al. Regularized principal man ifolds[J]. Journal of Machine Learning Research, 2001, 1(3):179-209.[11]STANFORD D C,RAGTERY A E. Fingding curvilinear features in spatial point pa tterns: principal curve clustering with noise[J]. IEEE Trans on Pattern Analy sis and Machine Intelligence, 2000, 22(6):601-609. [12]BENGIO Y,PAIEMENT J F,VINCENT P. Out of sample extensions for LLE, isomap , MDS, eigenmaps, and spectral clustering[A]. Neural Information Processing Syst ems 16 (NIPS’2003)[C].[S.l.],2003.【13]ROWEIS S T,SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290:2323-2326.
[14]HE X,YAN S,HU Y, et al. Face recognition using Laplacian faces[J]. IEEE Trans Pattern and Machine Intell, 2005, 27(3):328-340.
[15]YANG J,YU H,KUNZ W. An Efficient LDA algorithm for face recognition[A]. Int ernational Conference on Automation, Robotics, and Computer Vision (ICARCV’2000) [C]. Singapore, 2000.
[16]CHEN L F,LIAO Y M,LIN J C, et al.A new LDAbased face recognition system which can solve the small sample size problem[J]. Pattern Recognition, 2000, 33(10):1713-1726.
[17]FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936(7):178-188.
[18]WILKS S S.Mathematical statistics[M]. New York: Wiley,1962.
[19]DUDA R,HART P.Pattern classification and scene analysis[M]. New York: W iley,1973.
[20]YE J P,LI Q. A twostage linear discriminant analysis via QRdecomposit ion[J]. IEEE Trans Pattern Anal Machine Intell, 2005, 2(6):929-941.
[21]GOLUB G H,VAN LOAN C F.Matrix computations[M]. 3rd ed. Baltimore: The Johns Hopkins Univ Press, 1996.
相似文献/References:
[1]程显毅,陈小波.基于多Agent的模式识别框[J].智能系统学报,2006,1(2):89.
 CHENG Xian-yi,CHEN Xiao-bo.Frame of pattern recognition based on multi-Agent[J].CAAI Transactions on Intelligent Systems,2006,1(6):89.
[2]叶果,程洪,赵洋.电影中吸烟活动识别[J].智能系统学报,2011,6(5):440.
 YE Guo,CHENG Hong,ZHAO Yang.moking recognition in movies[J].CAAI Transactions on Intelligent Systems,2011,6(6):440.
[3]陈阳,覃鸿,李卫军,等.仿生模式识别技术研究与应用进展[J].智能系统学报,2016,11(1):1.[doi:10.11992/tis.201506011]
 CHEN Yang,QIN Hong,LI Weijun,et al.Progress in research and application of biomimetic pattern recognition technology[J].CAAI Transactions on Intelligent Systems,2016,11(6):1.[doi:10.11992/tis.201506011]
[4]杨钟亮,陈育苗.基于GGA-Elman网络的头部体态语言sEMG识别[J].智能系统学报,2014,9(4):385.[doi:10.3969/j.issn.1673-4785.201310047]
 YANG Zhongliang,CHEN Yumiao.An sEMG approach to recognize the body language of the head based on the GGA-Elman network[J].CAAI Transactions on Intelligent Systems,2014,9(6):385.[doi:10.3969/j.issn.1673-4785.201310047]
[5]李欢,王士同.支持向量机的多观测样本二分类算法[J].智能系统学报,2014,9(4):392.[doi:10.3969/j.issn.1673-4785.201312040]
 LI Huan,WANG Shitong.Binary-class classification algorithm with multiple-access acquired objects based on the SVM[J].CAAI Transactions on Intelligent Systems,2014,9(6):392.[doi:10.3969/j.issn.1673-4785.201312040]
[6]倪怀发,沈肖波,孙权森.基于低秩分解的鲁棒典型相关分析[J].智能系统学报,2017,12(4):491.[doi:10.11992/tis.201607024]
 NI Huaifa,SHEN Xiaobo,SUN Quansen.Robust canonical correlation analysis based onlow rank decomposition[J].CAAI Transactions on Intelligent Systems,2017,12(6):491.[doi:10.11992/tis.201607024]
[7]李德毅.AI——人类社会发展的加速器[J].智能系统学报,2017,12(5):583.[doi:10.11992/tis.201710016]
 LI Deyi.Artificial intelligence:an accelerator for the development of human society[J].CAAI Transactions on Intelligent Systems,2017,12(6):583.[doi:10.11992/tis.201710016]
[8]冯小荣,惠康华,柳振东.基于卷积特征和贝叶斯分类器的人脸识别[J].智能系统学报,2018,13(5):769.[doi:10.11992/tis.201706052]
 FENG Xiaorong,HUI Kanghua,LIU Zhendong.Face recognition based on convolution feature and Bayes classifier[J].CAAI Transactions on Intelligent Systems,2018,13(6):769.[doi:10.11992/tis.201706052]
[9]尤波,李忠杰,黄玲.基于改进型BP神经网络的手部动作识别[J].智能系统学报,2018,13(5):848.[doi:10.11992/tis.201703018]
 YOU Bo,LI Zhongjie,HUANG Ling.Hand-motion recognition based on improved BP neural network[J].CAAI Transactions on Intelligent Systems,2018,13(6):848.[doi:10.11992/tis.201703018]
[10]伍锡如,雪刚刚.基于图像聚类的交通标志CNN快速识别算法[J].智能系统学报,2019,14(4):670.[doi:10.11992/tis.201806026]
 WU Xiru,XUE Ganggang.CNN-based image clustering algorithm for fast recognition of traffic signs[J].CAAI Transactions on Intelligent Systems,2019,14(6):670.[doi:10.11992/tis.201806026]

备注/Memo

收稿日期:2007-04-17
金项目:
国家自然科学基金重点资助项目(60632050);
国家自然科学基金资助项目(60472060).
作者简介:
杨静宇,男,1941年生,教授,博士生导师,主要研究方向为模式识别理论与应用、智能机器人、图像分析等.1982~1984在美国伊理诺斯大学(UIUC)CSL实验室进行合作研究,1993~1994在美国密苏里大学(UMKC)计算机系担任访问教授,1998年在加拿大康科迪亚大学Concordia University)模式分析与机器智能中心担任访问教授.发表论文300余篇,论(译)著7部. E-mail: yangjy@mail.njust.edu.cn. 
郑宇杰,男,1977年生,博士,主要研究方向为模式识别、人工智能、机器学习等,被SCI、EI检索论文多篇. E-mail:yjzheng13@yahoo.com.cn

更新日期/Last Update: 2009-05-08
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134