字符串 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 后的引号不完整。 ') and Issue_No=(select Issue_No from OA where Script_ID=@Script_ID) order by ID ' 附近有语法错误。 一类分数阶神经网络的自适应<i>H</i><sub>∞</sub>同步-《智能系统学报》

[1]袁晓琳,莫立坡.一类分数阶神经网络的自适应H∞同步[J].智能系统学报,2019,14(02):239-245.[doi:10.11992/tis.201709045]
 YUAN Xiaolin,MO Lipo.Adaptive H∞ synchronization of a class of fractional-order neural networks[J].CAAI Transactions on Intelligent Systems,2019,14(02):239-245.[doi:10.11992/tis.201709045]
点击复制

一类分数阶神经网络的自适应H同步(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年02期
页码:
239-245
栏目:
出版日期:
2019-03-05

文章信息/Info

Title:
Adaptive H synchronization of a class of fractional-order neural networks
作者:
袁晓琳 莫立坡
北京工商大学 理学院, 北京 100048
Author(s):
YUAN Xiaolin MO Lipo
School of Science, Beijing Technology and Business University, Beijing 100048, China
关键词:
分数阶神经网络自适应H同步未知参数辨识控制器
Keywords:
fractional-orderneural networksadaptiveHsynchronizationunknown parametersidentificationcontroller
分类号:
TP18;O193
DOI:
10.11992/tis.201709045
摘要:
针对一类不确定分数阶神经网络系统,研究了其自适应H同步问题和参数辨识问题。提出了一个新的可以使闭环系统实现H同步的自适应控制协议,利用鲁棒控制的方法和Gronwall-Bellma不等式证明了驱动系统和响应系统在该协议下可以实现同步,同时满足H性能。通过仿真实验,验证了所设计控制协议的有效性,并且说明了利用该控制协议可以对未知参数进行辨识。
Abstract:
This study aims to address the adaptive H synchronization problem and parameter identification problem of a class of uncertain fractional order neural networks. First, an adaptive control law is proposed to make the closed-loop system achieve H synchronization. Second, by using the robust control method and Gronwall-Bellman inequality, it is shown that the drive system and the response system can achieve synchronization under the proposed control law while satisfying the H performance. Finally, by numerical simulations, the effectiveness of the control law is verified, illustrating that the unknown parameters can also be identified using the proposed control law.

参考文献/References:

[1] ZHANG Shou, YU Yongguang, YU Junzhi. LMI conditions for global stability of fractional-order neural networks[J]. IEEE transactions on neural networks and learning systems, 2017, 28(10):2423-2433.
[2] LI Yan, CHEN Yangquan, PODLUBNY I. Mittag-Leffler stability of fractional order nonlinear dynamic systems[J]. Automatica, 2009, 45(8):1965-1969.
[3] HAYMAN S. The McCulloch-pitts model[C]//International Joint Conference on Neural Networks. Washington, USA, 1999:4438-4439.
[4] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the national academy of sciences of the United States of America, 1982, 79(8):2554-2558.
[5] YAN Zheng, WANG Jun. Robust model predictive control of nonlinear systems with unmodeled dynamics and bounded uncertainties based on neural networks[J]. IEEE transactions on neural networks and learning systems, 2014, 25(3):457-469.
[6] PAN Yunpeng, WANG Jun. Robust model predictive control using a discrete-time recurrent neural network[C]//International Symposium on Neural Networks:advances in Neural Networks. Berlin, Heidelberg, Germany:, 2008:883-892.
[7] KASLIK E, SIVASUNDARAM S. Multistability in impulsive hybrid Hopfield neural networks with distributed delays[J]. Nonlinear analysis:real world applications, 2011, 12(3):1640-1649.
[8] BAO Haibo, PARK J H, CAO Jinde. Adaptive synchronization of fractional-order memristor-based neural networks with time delay[J]. Nonlinear dynamics, 2015, 82(3):1343-1354.
[9] CHEN Jiejie, ZENG Zhigang, JIANG Ping. Global mittag-leffler stability and synchronization of memristor-based fractional-order neural networks[J]. Neural networks, 2014, 51:1-8.
[10] WU Wei, CHEN Tianping. Global synchronization criteria of linearly coupled neural network systems with time-varying coupling[J]. IEEE transactions on neural networks, 2008, 19(2):319-332.
[11] VELMURUGAN G, RAKKIYAPPAN R, CAO Jinde. Finite-time synchronization of fractional-order memristor-based neural networks with time delays[J]. Neural networks, 2016, 73:36-46.
[12] ABDURAHMAN A, JIANG Haijun, TENG Zhidong. Finite-time synchronization for memristor-based neural networks with time-varying delays[J]. Neural networks, 2015, 69:20-28.
[13] YU Juan, HU Cheng, JIANG Haijun. α-stability and α-synchronization for fractional-order neural networks[J]. Neural networks, 2012, 35:82-87.
[14] MA Weiyuan, LI Changpin, WU Yujiang, et al. Adaptive synchronization of fractional neural networks with unknown parameters and time delays[J]. Entropy, 2014, 16(12):6286-6299.
[15] LIN Peng, JIA Yingmin, LI Lin. Distributed robust H consensus control in directed networks of agents with time-delay[J]. Systems and control letters, 2008, 57(8):643-653.
[16] MO L, JIA Y. H consensus control of a class of high-order multi-agent systems[J]. IET control theory and application, 2011, 5(1):247-253.
[17] MATHIYALAGAN K, ANBUVITHYA R, SAKTHIVEL R, et al. Non-fragile H synchronization of memristor-based neural networks using passivity theory[J]. Neural networks, 2016, 74:85-100.
[18] PODLUBNY I. Fractional differential equations:mathematics in science and engineering[M]. San Diego, Calif, USA:Academic Press, 1999.
[19] AGUILA-CAMACHO N, DUARTE-MERMOUD M A, GALLEGOS J A. Lyapunov functions for fractional order systems[J]. Communications in nonlinear science and numerical simulation, 2014, 19(9):2951-2957.
[20] KILBAS A A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Boston:Elsevier, 2006.
[21] SLOTINE J J E, LI Weiping. Applied nonlinear control[M]. Beijing, China Machine Press, 2004.
[22] TRIGEASSOU J C, MAAMRI N, SABATIER J, et al. A lyapunov approach to the stability of fractional differential equations[J]. Signal processing, 2011, 91(3):437-445.
[23] TRIGEASSOU J C, MAAMRI N. State space modeling of fractional differential equations and the initial condition problem[C]//Proceedings of the 6th International Multi-Conference on Systems, Signals and Devices. Djerba, Tunisia, 2009:1-7.

相似文献/References:

[1]汪纪锋,李元凯.具有一般化结构的分数阶超前校正器[J].智能系统学报,2006,1(02):62.
 WANG Ji-feng,LI Yuan-kai.The fractionalorder lead compensator with general structure[J].CAAI Transactions on Intelligent Systems,2006,1(02):62.
[2]丁永生.计算智能的新框架:生物网络结构[J].智能系统学报,2007,2(02):26.
 DING Yong-sheng.A new scheme for computational intelligence: bio-network architecture[J].CAAI Transactions on Intelligent Systems,2007,2(02):26.
[3]徐 雄.人工情感的进化控制系统实现[J].智能系统学报,2008,3(02):135.
 XU Xiong.Implementation of an evolutionary control system based on artificial emotion[J].CAAI Transactions on Intelligent Systems,2008,3(02):135.
[4]周孔丹,李 宁,鲁华祥.单电子电路的鲁棒性研究[J].智能系统学报,2008,3(03):195.
 ZHOU Kong-dan,LI Ning,LU Hua-xiang.Researching the robustness of single electron devices[J].CAAI Transactions on Intelligent Systems,2008,3(02):195.
[5]张米娜,韩红桂,乔俊飞.前馈神经网络结构动态增长-修剪方法[J].智能系统学报,2011,6(02):101.
 ZHANG Mina,HAN Honggui,QIAO Junfei.Research on dynamic feedforward neural network structure based on growing and pruning methods[J].CAAI Transactions on Intelligent Systems,2011,6(02):101.
[6]张文辉,高九州,马静,等.漂浮基空间机器人的径向基神经网络鲁棒自适应控制[J].智能系统学报,2011,6(02):114.
 ZHANG Wenhui,GAO Jiuzhou,MA Jing,et al.The RBF neural network robust adaptive control of a freefloating space robot[J].CAAI Transactions on Intelligent Systems,2011,6(02):114.
[7]薄迎春,乔俊飞,杨刚.一种多模块协同参与的神经网络[J].智能系统学报,2011,6(03):225.
 BO Yingchun,QIAO Junfei,YANG Gang.A multimodule cooperative neural network[J].CAAI Transactions on Intelligent Systems,2011,6(02):225.
[8]蒲兴成,张军,张毅.基于神经网络的改进行为协调控制及其在智能轮椅路径规划中的应用[J].智能系统学报,2011,6(05):456.
 PU Xingcheng,ZHANG Jun,ZHANG Yi.Modified behavior coordination for intelligent wheelchair path planning based on a neural network[J].CAAI Transactions on Intelligent Systems,2011,6(02):456.
[9]段海庆,朱齐丹.基于反步自适应神经网络的船舶航迹控制[J].智能系统学报,2012,7(03):259.
 DUAN Haiqing,ZHU Qidan.Trajectory tracking control of ships based onan adaptive backstepping neural network[J].CAAI Transactions on Intelligent Systems,2012,7(02):259.
[10]乔俊飞,逄泽芳,韩红桂.基于改进粒子群算法的污水处理过程神经网络优化控制[J].智能系统学报,2012,7(05):429.
 QIAO Junfei,PANG Zefang,HAN Honggui.Neural network optimal control for wastewater treatment processbased on APSO[J].CAAI Transactions on Intelligent Systems,2012,7(02):429.

备注/Memo

备注/Memo:
收稿日期:2017-10-09。
基金项目:国家自然科学基金项目(61772063);北京市自然科学基金项目(Z180005);北京市教委一般项目(KM201910011007).
作者简介:袁晓琳,女,1994年生,硕士研究生,主要研究方向为复杂系统的分析与控制。;莫立坡,男,1980年生,副教授,博士,主要研究方向为随机系统、多智能体系统的协调控制、智能优化算法。主持多项国家自然科学基金项目。发表学术论文30余篇,其中被SCI、EI检索20余篇。
通讯作者:莫立坡.E-mail:beihangmlp@126.com
更新日期/Last Update: 2019-04-25