[1]窦林立,展正然.利用二部图生成概念格[J].智能系统学报,2018,13(5):687-692.[doi:10.11992/tis.201703026]
 DOU Linli,ZHAN Zhengran.Constructing concept lattice using bipartite graph[J].CAAI Transactions on Intelligent Systems,2018,13(5):687-692.[doi:10.11992/tis.201703026]
点击复制

利用二部图生成概念格

参考文献/References:
[1] GANTER B, WILLE R. Formal concept analysis:mathematical foundations[M]. FRANZKE C, trans. Berlin Heidelberg:Springer-Verlag, 1999.
[2] WILLE R. Restructuring lattice theory:an approach based on hierarchies of concepts[M]//RIVAL I. Ordered Sets. Berlin Heidelberg:Springer, 1982:445-470.
[3] BELOHLAVEK R, SIGMUND E, ZACPAL J. Evaluation of IPAQ questionnaires supported by formal concept analysis[J]. Information sciences, 2011, 181(10):1774-1786.
[4] NGUYEN T T, HUI S C, CHANG Kuiyu. A lattice-based approach for mathematical search using formal concept analysis[J]. Expert systems with applications, 2012, 39(5):5820-5828.
[5] GODIN R, MISSAOUI R, ALAOUI H. Incremental concept formation algorithms based on Galois (concept) lattices[J]. Computational intelligence, 1995, 11(2):246-267.
[6] HO T B. Incremental conceptual clustering in the frame-work of Galois lattice[C]//LU H, MOTODA H, LIU H. KDD:Techniques and Applications. Singapore:World Scientific, 1997:49-64.
[7] 张文修, 魏玲, 祁建军. 概念格的属性约简理论与方法[J]. 中国科学E辑:信息科学, 2005, 35(6):628-639 ZHANG Wenxiu, WEI Ling, QI Jianjun. Attribute reduction theory and approach to concept lattice[J]. Science in China series E:information sciences, 2005, 35(6):628-639
[8] ELLOUMI S, JAAM J, HASNAH A, et al. A multi-level conceptual data reduction approach based on the Lukasiewicz implication[J]. Information sciences, 2004, 163(4):253-262.
[9] AMILHASTRE J, VILAREM M C, JANSSEN P. Complexity of minimum biclique cover and minimum biclique decomposition for bipartite domino-free graphs[J]. Discrete applied mathematics, 1998, 86(2/3):125-144.
[10] BERRY A, SIGAYRET A. Representing a concept lattice by a graph[J]. Discrete applied mathematics, 2004, 144(1/2):27-42.
[11] BERRY A, MCCONNELL R M, SIGAYRET A, et al. Very fast instances for concept generation[M]//MISSAOUI R, SCHMIDT J. Formal Concept Analysis. Berlin, Heidelberg:Springer, 2006, 3874:119-129.
[12] BERRY A, SANJUAN E, SIGAYRET A. Generalized domination in closure systems[J]. Discrete applied mathematics, 2006, 154(7):1064-1084.
[13] 李立峰, 刘三阳, 罗清君. 弦二部图的概念格表示[J]. 电子学报, 2013, 41(7):1384-1388 LI Lifeng, LIU Sanyang, LUO Qingjun. Representing chordal bipartite graph using concept lattice theory[J]. Acta electronic sinica, 2013, 41(7):1384-1388
[14] 李立峰. 链图的概念格表示[J]. 计算机科学, 2014, 41(2):264-266 LI Lifeng. Chain graph and their concept lattice representation[J]. Computer science, 2014, 41(2):264-266
[15] 张涛, 洪文学, 路静. 形式背景的属性树表示[J]. 系统工程理论与实践, 2011, 31(S2):197-202 ZHANG Tao, HONG Wenxue, LU Jing. Attribute tree representation for formal context[J]. Systems engineering-theory and practice, 2011, 31(S2):197-202
[16] 张涛, 任宏雷. 形式背景的属性拓扑表示[J]. 小型微型计算机系统, 2014, 35(3):590-593 ZHANG Tao, REN Honglei. Attribute topology of formal context[J]. Journal of Chinese computer systems, 2014, 35(3):590-593
[17] 张涛, 路静, 任宏雷. 一种基于树图的属性约简算法[J]. 小型微型计算机系统, 2014, 35(1):177-180 ZHANG Tao, LU Jing, REN Honglei. An algorithm based on free graph for calculation for attribute reduction[J]. Journal of Chinese computer systems, 2014, 35(1):177-180
[18] 黄天民, 徐扬, 赵海良, 等. 格、序引论及其应用[M]. 成都:西南交通大学出版社, 1998.
[19] 王树禾. 图论[M]. 北京:科学出版社, 2009.
[20] 肖位枢. 图论及其算法[M]. 北京:航空工业出版社, 1993.
相似文献/References:
[1]杜秋香,张继福,张素兰.概念特化的概念格更新构造算法[J].智能系统学报,2008,3(5):443.
 DU Qiu-xiang,ZHANG J i-fu,ZHANG Su-lan.An improved algor ithm based on concept spec ialization for constructing concept lattices[J].CAAI Transactions on Intelligent Systems,2008,3(5):443.
[2]马丽,米据生.决策形势背景的命题推演[J].智能系统学报,2015,10(6):934.[doi:10.11992/tis.201507055]
 MA Li,MI Jusheng.Propositions reasoning of decision formal contexts[J].CAAI Transactions on Intelligent Systems,2015,10(5):934.[doi:10.11992/tis.201507055]
[3]康向平,苗夺谦.一种基于概念格的集值信息系统中的知识获取方法[J].智能系统学报,2016,11(3):287.[doi:10.11992/tis.201603055]
 KANG Xiangping,MIAO Duoqian.A knowledge acquisition method based on concept latticein set-valued information systems[J].CAAI Transactions on Intelligent Systems,2016,11(5):287.[doi:10.11992/tis.201603055]
[4]刘保相,孟肖丽.基于关联分析的气象云图识别问题研究[J].智能系统学报,2014,9(5):595.[doi:10.3969/j.issn.1673-4785.201306049]
 LIU Baoxiang,MENG Xiaoli.The study on nephogram recognition based on relational analysis[J].CAAI Transactions on Intelligent Systems,2014,9(5):595.[doi:10.3969/j.issn.1673-4785.201306049]
[5]王雯,康向平,武燕.概念格在不完备形式背景中的知识获取模型[J].智能系统学报,2019,14(5):1048.[doi:10.11992/tis.201809021]
 WANG Wen,KANG Xiangping,WU Yan.Knowledge acquisition model of concept lattice in an incomplete formal context[J].CAAI Transactions on Intelligent Systems,2019,14(5):1048.[doi:10.11992/tis.201809021]
[6]毛华,武秀.三支概念的一种构建方法[J].智能系统学报,2020,15(3):514.[doi:10.11992/tis.201904022]
 MAO Hua,WU Xiu.A new method for constructing three-way concept[J].CAAI Transactions on Intelligent Systems,2020,15(5):514.[doi:10.11992/tis.201904022]
[7]胡小康,王俊红.基于相容模糊概念的规则提取方法[J].智能系统学报,2016,11(3):352.[doi:10.11992/tis.201603043]
 HU Xiaokang,WANG Junhong.Research on rule extraction method based on compatibility fuzzy concept[J].CAAI Transactions on Intelligent Systems,2016,11(5):352.[doi:10.11992/tis.201603043]
[8]石慧,何苗,魏玲.基于不可约元下集格的概念获取[J].智能系统学报,2014,9(2):244.[doi:10.3969/j.issn.1673-4785.201307019]
 SHI Hui,HE Miao,WEI Ling.Concept acquisition based on the down-set lattice of irreducible elements[J].CAAI Transactions on Intelligent Systems,2014,9(5):244.[doi:10.3969/j.issn.1673-4785.201307019]
[9]毛华,刘祎超.基于权值最大圈的概念格构造算法[J].智能系统学报,2016,11(4):519.[doi:10.11992/tis.201606006]
 MAO Hua,LIU Yichao.An algorithm for concept lattice construction based on maximum cycles of weight values[J].CAAI Transactions on Intelligent Systems,2016,11(5):519.[doi:10.11992/tis.201606006]
[10]温云霞,王俊红.横向拆分形势背景下的快速规则提取方法[J].智能系统学报,2016,11(4):526.[doi:10.11992/tis.201606008]
 WEN Yunxia,WANG Junhong.Research on a fast method for extracting rules based on horizontal splitting[J].CAAI Transactions on Intelligent Systems,2016,11(5):526.[doi:10.11992/tis.201606008]
[11]毛华,史明.利用二元拟阵Kn图的一种建格方法[J].智能系统学报,2017,12(3):333.[doi:10.11992/tis.201704022]
 MAO Hua,SHI Ming.A constructive method of lattice using the Kn diagram of binary matroid[J].CAAI Transactions on Intelligent Systems,2017,12(5):333.[doi:10.11992/tis.201704022]
[12]张晓鹤,米据生,李美争.粒协调决策形式背景的属性约简与规则融合[J].智能系统学报,2019,14(6):1138.[doi:10.11992/tis.201905050]
 ZHANG Xiaohe,MI Jusheng,LI Meizheng.Attribute reduction and rule fusion in granular consistent formal decision contexts[J].CAAI Transactions on Intelligent Systems,2019,14(5):1138.[doi:10.11992/tis.201905050]
[13]张晓鹤,陈德刚,米据生.基于信息熵的对象加权概念格[J].智能系统学报,2020,15(6):1097.[doi:10.11992/tis.202006043]
 ZHANG Xiaohe,CHEN Degang,MI Jusheng.Object-weighted concept lattice based on information entropy[J].CAAI Transactions on Intelligent Systems,2020,15(5):1097.[doi:10.11992/tis.202006043]

备注/Memo

收稿日期:2017-03-21。
基金项目:河北省高校科研基金项目(Z2015137).
作者简介:窦林立,女,1975年生,硕士研究生,讲师,主要研究方向为计算机数学、离散数学。参与完成多项省级和市级课题。发表学术论文6篇;展正然,女,1981年生,硕士研究生,讲师,主要研究方向为微分方程。发表学术论文9篇,被EI检索2篇,SCI检索1篇,出版教材1部。
通讯作者:窦林立.E-mail:1321407258@qq.com.

更新日期/Last Update: 2018-10-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134