[1]康向平,苗夺谦.一种基于概念格的集值信息系统中的知识获取方法[J].智能系统学报编辑部,2016,11(3):287-293.[doi:10.11992/tis.201603055]
 KANG Xiangping,MIAO Duoqian.A knowledge acquisition method based on concept latticein set-valued information systems[J].CAAI Transactions on Intelligent Systems,2016,11(3):287-293.[doi:10.11992/tis.201603055]
点击复制

一种基于概念格的集值信息系统中的知识获取方法(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年3期
页码:
287-293
栏目:
出版日期:
2016-06-25

文章信息/Info

Title:
A knowledge acquisition method based on concept latticein set-valued information systems
作者:
康向平12 苗夺谦12
1. 同济大学 计算机科学与技术系, 上海 201804;
2. 同济大学 嵌入式系统与服务计算教育部重点实验室, 上海 201804
Author(s):
KANG Xiangping12 MIAO Duoqian12
1. Department of Computer Science and Technology, Tongji University, Shanghai 201804, China;
2. Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 201804, China
关键词:
粗糙集概念格集值信息系统相容关系代数结构
Keywords:
rough setconcept latticeset-valued information systemstolerance relationsalgebraic structure
分类号:
TP18
DOI:
10.11992/tis.201603055
摘要:
以集值信息系统为研究背景,以概念格为理论基础,提出了一种基于概念格的集值信息系统中的知识获取方法。该模型首先将复杂的集值信息系统转化为形式上更加简单的单值背景,然后借助概念格理论,重点探讨了基于相容关系的粒化模型和集值系统中的格代数结构,该代数结构可以将论域中的所有覆盖以格的形式有机结织起来。此外,探讨了集值信息系统中的约简、核等问题。本文有助于拓展概念格的应用范围,同时也为集值信息系统的分析和处理提供了一种有益思路。
Abstract:
The paper takes set-valued information systems as research background, proposes a knowledge acquisition method on the basis of concept lattice. The model can transforms a complicated set-valued information system into a simpler one-valued context, and then by means of concept lattice, emphasizes the granularity model based on tolerance relation and the algebra structure in the set-valued information system, where the algebraic structure can organize all covers in the form of lattice structure, and it can be considered an important algebraic structure in the set-valued information system. Meanwhile, the paper also offers some simple solutions to common problems, such as reduction, core. In short, this paper not only helps to explore the application range of concept lattice, but also offers a useful idea for the analysis and processing of set-valued information systems.

参考文献/References:

[1] PAWLAK Z. Rough sets[J]. International journal of computer & information sciences, 1982, 11(5): 341-356.
[2] PAWLAK Z. Rough sets: theoretical aspects of reasoning about data[M]. Dordrecht: Kluwer Academic Publishers, 1991.
[3] 王国胤, 张清华, 胡军. 粒计算研究综述[J]. 智能系统学报, 2007, 2(6): 8-26. WANG Guoyin, ZHANG Qinghua, HU Jun. An overview of granular computing[J]. CAAI transactions on intelligent systems, 2007, 2(6): 8-26.
[4] 王国胤, 姚一豫, 于洪. 粗糙集理论及应用研究综述[J]. 计算机学报, 2009, 32(7): 1229-1246. WANG Guoyin, YAO Yiyu, YU Hong. A survey on rough set theory and applications[J]. Chinese journal of computers, 2009, 32(7): 1229-1246.
[5] 伞冶, 叶玉玲. 粗糙集理论及其在智能系统中的应用[J]. 智能系统学报, 2007, 4(2): 40-47. SAN Ye, YE Yuling. Rough set theory and its application in the intelligent systems[J]. CAAI transactions on intelligent systems, 2007, 4(2): 40-47.
[6] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[M]//RIVAL I. Ordered Sets. Netherlands: Springer, 1982: 445-470.
[7] LI Jinhai, MEI Changlin, WANG Lidong, et al. On inference rules in decision formal contexts[J]. International journal of computational intelligence systems, 2015, 8(1): 175-186.
[8] LI Jinhai, MEI Changlin, WANG Junhong, et al. Rule-preserved object compression in formal decision contexts using concept lattices[J]. Knowledge-based systems, 2014, 71: 435-445.
[9] QI Jianjun, QIAN Ting, WEI Ling. The connections between three-way and classical concept lattices[J]. Knowledge-based systems, 2016, 91: 143-151.
[10] ZHAI Yanhui, LI Deyu, QU Kaishe. Decision implication canonical basis: a logical perspective[J]. Journal of computer and system sciences, 2015, 81(1): 208-218.
[11] 张文修, 姚一豫, 梁怡. 粗糙集与概念格[M]. 西安: 西安交通大学出版社, 2006.
[12] KANG Xianping, LI Deyu, WANG Suge, et al. Rough set model based on formal concept analysis[J]. Information sciences, 2013, 222: 611-625.
[13] 曲开社, 翟岩慧, 梁吉业, 等. 形式概念分析对粗糙集理论的表示及扩展[J]. 软件学报, 2007, 18(9): 2174-2182. QU Kaishe, ZHAI Yanhui, LIANG Jiye, et al. Representation and extension of rough set theory based on formal concept analysis[J]. Journal of software, 2007, 18(9): 2174-2182.
[14] 仇国芳, 张志霞, 张炜. 基于粗糙集方法的概念格理论研究综述[J]. 模糊系统与数学, 2014, 28(1): 168-177. QIU Guofang, ZHANG Zhixia, ZHANG Wei. A survey for study on concept lattice theory via rough set[J]. Fuzzy systems and mathematics, 2014, 28(1): 168-177.
[15] WAN Qing, WEI Ling. Approximate concepts acquisition based on formal contexts[J]. Knowledge-based systems, 2015, 75: 78-86.
[16] KENT R E. Rough concept analysis: a synthesis of rough sets and formal concept analysis[J]. Fundamenta informaticae, 1996, 27(2-3): 169-181.
[17] CHEN Jinkun, LI Jinjin, LIN Yaojin, et al. Relations of reduction between covering generalized rough sets and concept lattices[J]. Information sciences, 2015, 304: 16-27.
[18] LI Jinhai, REN Yue, MEI Changlin, et al. A comparative study of multigranulation rough sets and concept lattices via rule acquisition[J]. Knowledge-based systems, 2016, 91: 152-164.
[19] SHAO Mingwen, LEUNG Y. Relations between granular reduct and dominance reduct in formal contexts[J]. Knowledge-based systems, 2014, 65: 1-11.
[20] TAN Anhui, LI Jinjin, LIN Guoping. Connections between covering-based rough sets and concept lattices[J]. International journal of approximate reasoning, 2015, 56: 43-58.
[21] KRYSZKIEWICZ M. Rough set approach to incomplete information systems[J]. Information sciences, 1998, 112(1/2/3/4): 39-49.
[22] KRYSZKIEWICZ M. Rules in incomplete information systems[J]. Information sciences, 1999, 113(3/4): 271-292.
[23] 王国胤. Rough集理论在不完备信息系统中的扩充[J]. 计算机研究与发展, 2002, 39(10): 1238-1243. WANG Guoyin. Extension of rough set under incomplete information systems[J]. Journal of computer research and development, 2002, 39(10): 1238-1243.
[24] LEUNG Y, LI Deyu. Maximal consistent block technique for rule acquisition in incomplete information systems[J]. Information sciences, 2003, 153: 85-106.
[25] ZHANG Wenxiu, MI Jusheng. Incomplete information system and its optimal selections[J]. Computers & mathematics with applications, 2004, 48(5/6): 691-698.
[26] GUAN Yanyong, WANG Hongkai. Set-valued information systems[J]. Information sciences, 2006, 176(17): 2507-2525.
[27] QIAN Yuhua, DANG Chuangyin, LIANG Jiye, et al. Set-valued ordered information systems[J]. Information sciences, 2009, 179(16): 2809-2832.
[28] QIAN Y H, LIANG J Y, SONG P, et al. On dominance relations in disjunctive set-valued ordered information systems[J]. International journal of information technology & decision making, 2010, 9(1): 9-33.
[29] GANTER B, WILLE R. Formal concept analysis: mathematical foundations[M]. Berlin Heidelberg: Springer-Verlag, 1999.

相似文献/References:

[1]尹林子,阳春华,桂卫华,等.规则分层约简算法[J].智能系统学报编辑部,2008,3(06):492.
 YIN Lin-zi,YANG Chun-hua,GUI Wei-hua,et al.Hierarchical reduction of rules[J].CAAI Transactions on Intelligent Systems,2008,3(3):492.
[2]毋 非,封化民,申晓晔.容错粗糙模型的事件检测研究[J].智能系统学报编辑部,2009,4(02):112.
 WU Fei,FENG Hua-min,SHEN Xiao-ye.Research on event detection based on the tolerance rough set model[J].CAAI Transactions on Intelligent Systems,2009,4(3):112.
[3]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报编辑部,2007,2(02):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2(3):40.
[4]王国胤,张清华,胡 军.粒计算研究综述[J].智能系统学报编辑部,2007,2(06):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2(3):8.
[5]裴小兵,吴 涛,陆永忠.最小化决策规则集的计算方法[J].智能系统学报编辑部,2007,2(06):65.
 PEI Xiao-bing,WU Tao,LU Yong-zhong.Calculating method for a minimal set of decision rules[J].CAAI Transactions on Intelligent Systems,2007,2(3):65.
[6]杜秋香,张继福,张素兰.概念特化的概念格更新构造算法[J].智能系统学报编辑部,2008,3(05):443.
 DU Qiu-xiang,ZHANG J i-fu,ZHANG Su-lan.An improved algor ithm based on concept spec ialization for constructing concept lattices[J].CAAI Transactions on Intelligent Systems,2008,3(3):443.
[7]张志飞,苗夺谦.基于粗糙集的文本分类特征选择算法[J].智能系统学报编辑部,2009,4(05):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
 ZHANG Zhi-fei,MIAO Duo-qian.Feature selection for text categorization based on rough set[J].CAAI Transactions on Intelligent Systems,2009,4(3):453.[doi:10.3969/j.issn.1673-4785.2009.05.011]
[8]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报编辑部,2011,6(02):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6(3):132.
[9]顾成杰,张顺颐,杜安源.结合粗糙集和禁忌搜索的网络流量特征选择[J].智能系统学报编辑部,2011,6(03):254.
 GU Chengjie,ZHANG Shunyi,DU Anyuan.Feature selection of network traffic using a rough set and tabu search[J].CAAI Transactions on Intelligent Systems,2011,6(3):254.
[10]周丹晨.采用粒计算的属性权重确定方法[J].智能系统学报编辑部,2015,10(02):273.[doi:10.3969/j.issn.1673-4785.201312008]
 ZHOU Danchen.A method for ascertaining the weight of attributes based on granular computing[J].CAAI Transactions on Intelligent Systems,2015,10(3):273.[doi:10.3969/j.issn.1673-4785.201312008]

备注/Memo

备注/Memo:
收稿日期:2016-3-28;改回日期:。
基金项目:国家自然科学基金项目(61273304,61202170);国家博士后科学基金项目(2014M560352);高等学校博士学科点专项科研基金项目(20130072130004).
作者简介:康向平,男,1982年生,博士后,主要研究方向为概念格、粗糙集、粒计算。苗夺谦,男,1964年生,教授,博士生导师,中国人工智能学会理事、中国计算机学会杰出会员、中国自动化学会智能自动化专委会委员、上海市计算机学会理事、上海市人工智能学会理事,主要研究方向为粗糙集、粒计算、Web智能、数据挖掘和机器学习。主持完成国家级、省部级自然科学基金与科技攻关项目多项,参与完成973计划项目、863计划项目、国家自然科学基金重大研究计划项目、上海市科委重大科技攻关项目等多项。作为项目组成员,曾获国家教委科技进步三等奖、教育部科技进步一等奖、上海市技术发明一等奖、重庆市自然科学一等奖等。发表学术论文260余篇,其中被SCI或EI检索150余篇.编著教材及著作12部,获得专利授权9项。
通讯作者:康向平.E-mail:tongji_kangxp@sina.com.
更新日期/Last Update: 1900-01-01