[1]周彦,李雅芳,王冬丽,等.视觉同时定位与地图创建综述[J].智能系统学报,2018,13(01):97-106.[doi:10.11992/tis.201703006]
 ZHOU Yan,LI Yafang,WANG Dongli,et al.A survey of VSLAM[J].CAAI Transactions on Intelligent Systems,2018,13(01):97-106.[doi:10.11992/tis.201703006]
点击复制

视觉同时定位与地图创建综述(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第13卷
期数:
2018年01期
页码:
97-106
栏目:
出版日期:
2018-01-24

文章信息/Info

Title:
A survey of VSLAM
作者:
周彦 李雅芳 王冬丽 裴廷睿
湘潭大学 信息工程学院, 湖南 湘潭 411105
Author(s):
ZHOU Yan LI Yafang WANG Dongli PEI Tingrui
College of Information Engineering, Xiangtan University, Xiangtan 411105, China
关键词:
计算机视觉同时定位与地图创建VSLAM机器人滤波图优化综述深度学习
Keywords:
computer visionsimultaneous localization and mappingVSLAMrobotfiltergraph optimizationsurveydeep learning
分类号:
TP24
DOI:
10.11992/tis.201703006
摘要:
同时定位与地图创建 (simultaneous localization and mapping,SLAM)自1986年提出以来一直是机器人领域的热点问题,被认为是实现真正全自主移动机器人的关键。其目的是让机器人在未知环境下实现自身定位同时创建出环境地图。视觉SLAM (visual simultaneous localization and mapping,VSLAM)是仅用相机作为传感器的定位与制图。随着计算机视觉和机器人技术的发展,VSLAM已成为无人系统领域的研究焦点。本文对VSLAM的最新研究现状进行总结,阐述了VSLAM中的主要问题,分别介绍了VSLAM基于滤波和图优化的实现方法,并探讨了VSLAM 的研究与发展方向。
Abstract:
Simultaneous localization and mapping (SLAM), an essential task for an autonomy robot, has been a hot topic in the field of robotics since the concept first proposed in 1986. The purpose is to make a robot locate itself in an unknown environment while simultaneously construct a map of the environment. Visual SLAM (VSLAM) refers to that one using a camera or cameras as the sole sensor. With the development of computer vision and robotics, VSLAM has become the focus in the field of unmanned systems. In this paper, we survey the recent progress of VSLAM. After identifying the main problems in the development of VSLAM, we introduce the VSLAM methods based on both filter and graph optimizations. Finally, the further study and development directions of VSLAM are given.

参考文献/References:

[1] CADENA C, CARLONE L, CARRILLO H, et al. Simultaneous localization and mapping: present, future, and the robust-perception age[Z]. Computer science, 2016.
[2] FUENTES-PACHECO J, RUIZ-ASCENCIO J, RENDóN-MANCHA J M. Visual simultaneous localization and mapping: a survey[J]. Artificial intelligence review, 2015, 43(1): 55-81.
[3] 于金霞, 王璐, 蔡自兴. 未知环境中移动机器人自定位技术[M]. 北京: 电子工业出版社, 2011.
YU Jinxia, WANG Lu, CAI Zixing. Self-localization technologies of mobile robot in unknown environment[M]. Beijing: Publishing House of Electronics Industry, 2011.
[4] 刘浩敏, 章国锋, 鲍虎军. 基于单目视觉的同时定位与地图构建方法综述[J]. 计算机辅助设计与图形学学报, 2016, 28(6): 855-868.
LIU Haomin, ZHANG Guofeng, BAO Hujun. A survey of monocular simultaneous localization and mapping [J]. Journal of computer-aided design and computer graphics, 2016, 28(6): 855-868.
[5] SMITH R, SELF M, CHEESEMAN P. Estimating uncertain spatial relationships in robotics [J]. Machine intelligence and pattern recognition, 1988, 1(5): 435-461.
[6] SMITH R C, CHEESEMAN P. On the representation and estimation of spatial uncertainty [J]. The international journal of robotics research, 1986, 5(4): 56-68.
[7] CSORBA M. Simultaneous localisation and map building[D]. Oxford: University of Oxford, 1997: 699-704.
[8] DISSANAYAKE M W M G, NEWMAN P, CLARK S, et al. A solution to the simultaneous localization and map building (SLAM) problem [J]. IEEE transactions on robotics and automation, 2001, 17(3): 229-241.
[9] AGARWAL S, SNAVELY N, SIMON I, et al. Building Rome in a day[C]//Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan, 2009: 72-79.
[10] STRASDAT H, MONTIEL J M M, DAVISON A J. Real-time monocular SLAM: why filter?[C]//Proceedings of 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA, 2010: 2657-2664.
[11] 梁明杰, 闵华清, 罗荣华. 基于图优化的同时定位与地图创建综述[J]. 机器人, 2013, 35(4): 500-512.
LIANG Mingjie, MIN Huaqing, LUO Ronghua. Graph-based SLAM: a survey[J]. Robot, 2013, 35(4): 500-512.
[12] MUJA M, LOWE D G. Fast approximate nearest neighbors with automatic algorithm configuration[C]//Proceedings of the 4th International Conference on Computer Vision Theory and Applications. Lisboa, Portugal, 2009: 331-340.
[13] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110.
[14] BAY H, ESS A, TUYTELAARS T, et al. Speeded-up robust features (SURF)[J]. Computer vision and image understanding, 2008, 110(3): 346-359.
[15] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain, 2011: 2564-2571.
[16] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features[C]//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Crete, Greece, 2010: 778-792.
[17] CIVERA J, DAVISON A J, MONTIEL J M M. Inverse depth parametrization for monocular SLAM[J]. IEEE transactions on robotics, 2008, 24(5): 932-945.
[18] KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan, 2007: 225-234.
[19] KLEIN G, MURRAY D. Improving the agility of keyframe-based SLAM[C]//Proceedings of the 10th European Conference on Computer Vision. Marseille, France, 2008: 802-815.
[20] WEISS S, SIEGWART R. Real-time metric state estimation for modular vision-inertial systems[C]//Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China, 2011: 4531-4537.
[21] JAMA M, SCHINSTOCK D. Parallel tracking and mapping for controlling VTOL airframe[J]. Journal of control science and engineering, 2011, 2011: 413074.
[22] DAVISON A J. SLAM with a single camera[C]//Proceedings of Workshop on Concurrent Mapping and Localization for Autonomous Mobile Robots in Conjunction with ICRA. Washington, DC, USA, 2002.
[23] 祝风翔. 基于图像的深度获取方法研究[D]. 杭州, 中国: 浙江大学, 2016.
ZHU Fengxiang. Depth map acquisition method study based on image[D]. Hangzhou, China: Zhejiang University, 2016.
[24] DAVISON A J. Active search for real-time vision[J]. Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005: 66-73.
[25] CIVERA J, GRASA O G, DAVISON A J, et al. 1-point RANSAC for EKF-based structure from motion[C]//Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO, USA, 2009: 3498-3504.
[26] CIVERA J, GRASA O G, DAVISON A J, et al. 1-Point RANSAC for extended Kalman filtering: application to real-time structure from motion and visual odometry[J]. Journal of field robotics, 2010, 27(5): 609-631.
[27] GUERRA E, MUNGUIA R, BOLEA Y, et al. Validation of data association for monocular SLAM[J]. Mathematical problems in engineering, 2013, 2013: 671376.
[28] EADE E, DRUMMOND T. Scalable monocular SLAM [C]//Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, NY, USA, 2006: 469-476.
[29] LEONARD J J, DURRANT-WHYTE H F. Simultaneous map building and localization for an autonomous mobile robot[C]//Proceedings of Intelligence for Mechanical Systems, Proceedings IROS’91. IEEE/RSJ International Workshop on Intelligent Robots and Systems’91. Osaka, Japan, 1991: 1442-1447.
[30] 罗荣华, 洪炳镕. 移动机器人同时定位与地图创建研究进展[J]. 机器人, 2004, 26(2): 182-186.
LUO Ronghua, HONG Bingrong. The progress of simultaneous localization and mapping for mobile robot[J]. Robot, 2004, 26(2): 182-186.
[31] LEONARD J J, FEDER H J S. Decoupled stochastic mapping[J]. IEEE journal of oceanic engineering, 2001, 26(4): 561-571.
[32] WILLIAMS S B. Efficient solutions to autonomous mapping and navigation problems[D]. Sydney, Australia: University of Sydney, 2001.
[33] GUIVANT J E, NEBOT E M. Optimization of the simultaneous localization and map-building algorithm for real-time implementation[J]. IEEE transactions on robotics and automation, 2001, 17(3): 242-257.
[34] THRUN S, LIU Yufeng, KOLLER D, et al. Simultaneous localization and mapping with sparse extended information filters[J]. The international journal of robotics research, 2004, 23(7/8): 693-716.
[35] DAVISON A J, REID I D, MOLTON N D, et al. MonoSLAM: real-time single camera SLAM[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 1052-1067.
[36] MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM: a factored solution to the simultaneous localization and mapping problem[C]//Proceedings of the 18th International Conference on Artificial Intelligence. Pittsburgh, PA, USA, 2002: 2004.
[37] MONTEMERLO M, THRUN S. Simultaneous localization and mapping with unknown data association using FastSLAM[C]//Proceedings of 2003 IEEE International Conference on Robotics and Automation. Taipei, Taiwan, China, 2003: 1985-1991.
[38] MULLANE J, VO B N, ADAMS M D, et al. A random-finite-set approach to Bayesian SLAM[J]. IEEE transactions on robotics, 2011, 27(2): 268-282.
[39] ADAMS M, VO B N, MAHLER R, et al. SLAM gets a PHD: new concepts in map estimation[J]. IEEE robotics and automation magazine, 2014, 21(2): 26-37.
[40] LU F, MILIOS E. Globally consistent range scan alignment for environment mapping[J]. Autonomous robots, 1997, 4(4): 333-349.
[41] GUTMANN J S, KONOLIGE K. Incremental mapping of large cyclic environments[C]//Proceedings of 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Monterey, CA, USA, 1999: 318-325.
[42] ENDRES F, HESS J, STURM J, et al. 3-D mapping with an RGB-D camera[J]. IEEE transactions on robotics, 2014, 30(1): 177-187.
[43] MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE transactions on robotics, 2015, 31(5): 1147-1163.
[44] MUR-ARTAL R, TARDóS J D. ORB-SLAM2: an open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE transactions on robotics, 2017, 23(5): 1255-1262.
[45] BLESER G, HENDEBY G. Using optical flow as lightweight SLAM alternative[C]//Proceedings of the 8th IEEE International Symposium on Mixed and Augmented Reality. Orlando, FL, USA, 2009: 175-176.
[46] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM: dense tracking and mapping in real-time[C]//Proceedings of 2011 IEEE International Conference on Computer Vision. Barcelona, Spain, 2011: 2320-2327.
[47] ENGEL J, SCH?PS T, CREMERS D. LSD-SLAM: large-scale direct monocular SLAM[C]//Proceedings of the 13th European Conference on Computer Vision. Zurich, Switzerland, 2014: 834-849.
[48] FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO: fast semi-direct monocular visual odometry[C]//Proceedings of 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China, 2014: 15-22.
[49] TORR P H S, ZISSERMAN A. Feature based methods for structure and motion estimation[M]. TRIGGS B, ZISSERMAN A, SZELISKI R. Vision Algorithms: Theory and Practice. Berlin, Heidelberg, Germany: Springer, 2000: 278-294.
[50] 林辉灿, 吕强, 张洋, 等. 稀疏和稠密的VSLAM的研究进展[J]. 机器人, 2016, 38(5): 621-631.
LIN Huican, LYU Qiang, ZHANG Yang, et al. The sparse and dense VSLAM: a survey[J]. Robot, 2016, 38(5): 621-631.
[51] GAO Xiang, ZHANG Tao. Unsupervised learning to detect loops using deep neural networks for visual SLAM system[J]. Autonomous robots, 2017, 41(1): 1-18.
[52] 张国良, 汤文俊, 曾静, 等. 考虑通信状况的多机器人CSLAM问题综述[J]. 自动化学报, 2014, 40(10): 2073-2088.
ZHANG Guoliang, TANG Wenjun, ZENG Jing, et al. An overview on the cooperative SLAM problem of multi-robot systems considering communication conditions[J]. Acta automatica sinica, 2014, 40(10): 2073-2088.

相似文献/References:

[1]夏 凡,王 宏.基于局部异常行为检测的欺骗识别研究[J].智能系统学报,2007,2(05):12.
 XIA Fan,WANG Hong.Methodologies for deception detection based on abnormal b ehavior[J].CAAI Transactions on Intelligent Systems,2007,2(01):12.
[2]杨 戈,刘 宏.视觉跟踪算法综述[J].智能系统学报,2010,5(02):95.
 YANG Ge,LIU Hong.Survey of visual tracking algorithms[J].CAAI Transactions on Intelligent Systems,2010,5(01):95.
[3]刘宏,李哲媛,许超.视错觉现象的分类和研究进展[J].智能系统学报,2011,6(01):1.
 LIU Hong,LI Zheyuan,XU Chao.The categories and research advances of visual illusions[J].CAAI Transactions on Intelligent Systems,2011,6(01):1.
[4]叶果,程洪,赵洋.电影中吸烟活动识别[J].智能系统学报,2011,6(05):440.
 YE Guo,CHENG Hong,ZHAO Yang.moking recognition in movies[J].CAAI Transactions on Intelligent Systems,2011,6(01):440.
[5]史晓鹏,何为,韩力群.采用Hough变换的道路边界检测算法[J].智能系统学报,2012,7(01):81.
 SHI Xiaopeng,HE Wei,HAN Liqun.A road edge detection algorithm based on the Hough transform[J].CAAI Transactions on Intelligent Systems,2012,7(01):81.
[6]顾照鹏,刘宏.单目视觉同步定位与地图创建方法综述[J].智能系统学报,2015,10(04):499.[doi:10.3969/j.issn.1673-4785.201503003]
 GU Zhaopeng,LIU Hong.A survey of monocular simultaneous localization and mapping[J].CAAI Transactions on Intelligent Systems,2015,10(01):499.[doi:10.3969/j.issn.1673-4785.201503003]
[7]赵军,於俊,汪增福.基于改进逆向运动学的人体运动跟踪[J].智能系统学报,2015,10(04):548.[doi:10.3969/j.issn.1673-4785.201403032]
 ZHAO Jun,YU Jun,WANG Zengfu.Human motion tracking based on an improved inverse kinematics[J].CAAI Transactions on Intelligent Systems,2015,10(01):548.[doi:10.3969/j.issn.1673-4785.201403032]
[8]刘建华,刘华平,杨建国,等.测距式传感器同时定位与地图创建综述[J].智能系统学报,2015,10(5):655.[doi:10.11992/tis.201403017]
 LIU Jianhua,LIU Huaping,YANG Jianguo,et al.A survey of range-only SLAM for mobile robots[J].CAAI Transactions on Intelligent Systems,2015,10(01):655.[doi:10.11992/tis.201403017]
[9]姬晓飞,王昌汇,王扬扬.分层结构的双人交互行为识别方法[J].智能系统学报,2015,10(6):893.[doi:10.11992/tis.201505006]
 JI Xiaofei,WANG Changhui,WANG Yangyang.Human interaction behavior-recognition method based on hierarchical structure[J].CAAI Transactions on Intelligent Systems,2015,10(01):893.[doi:10.11992/tis.201505006]
[10]方鹏,李贤,汪增福.运用核聚类和偏最小二乘回归的歌唱声音转换[J].智能系统学报,2016,11(1):55.[doi:10.11992/tis.201506022]
 FANG Peng,LI Xian,WANG Zengfu.Conversion of singing voice based on kernel clustering and partial least squares regression[J].CAAI Transactions on Intelligent Systems,2016,11(01):55.[doi:10.11992/tis.201506022]

备注/Memo

备注/Memo:
收稿日期:2017-03-03。
基金项目:国家自然科学基金项目(61773330, 61372049, 61100140, 61104210);湖南省自然科学基金项目(2017JJ2253);湖南省教育厅优秀青年基金项目(17B259).
作者简介:周彦,男,1978年生,副教授,博士,主要研究方向为多传感器信息融合、图像处理与机器视觉。发表学术论文40余篇,其中被SCI收录10余篇。目前主持国家自然科学基金项目1项,参与国家自然科学基金项目4项;曾参与及主持“973”、国家自然科学基金等项目15项。;李雅芳,女,1993年生,硕士研究生。主要研究方向为图像处理与机器视觉;王冬丽,女,1980年生,副教授,博士,主要研究方向为模式识别与机器视觉。发表学术论文30余篇。目前主持国家自然科学基金项目1项。曾参与国家自然科学基金、上海市自然科学基金等项目。
通讯作者:周彦.E-mail:yanzhou@xtu.edu.cn.
更新日期/Last Update: 2018-02-01