[1]蒙西,乔俊飞,李文静.基于快速密度聚类的RBF神经网络设计[J].智能系统学报,2018,13(3):331-338.[doi:10.11992/tis.201702014]
 MENG Xi,QIAO Junfei,LI Wenjing.Construction of RBF neural networks via fast density clustering[J].CAAI Transactions on Intelligent Systems,2018,13(3):331-338.[doi:10.11992/tis.201702014]
点击复制

基于快速密度聚类的RBF神经网络设计

参考文献/References:
[1] CHEN Sheng, WOLFGANG A, HARRIS C J, et al. Symmetric RBF classifier for nonlinear detection in multiple-antenna-aided systems[J]. IEEE transactions on neural networks, 2008, 19(5):737-745.
[2] 乔俊飞, 韩红桂. RBF神经网络的结构动态优化设计[J]. 自动化学报, 2010, 36(6):865-872. QIAO Junfei, HAN Honggui. Optimal structure design for RBFNN structure[J]. Acta Automatica Sinica, 2010, 36(6):865-872.
[3] BARANDIARAN X, MORENO A. On the nature of neural information:a critique of the received view 50 years later[J]. Neurocomputing, 2008, 71(4/5/6):681-692.
[4] 侯远杭, 黄胜, 梁霄. PSO训练的弹性RBFNN在船型优化中的应用研究[J]. 哈尔滨工程大学学报, 2017, 38(2):175-180. HOU Yuanhang, HUANG Sheng, LIANG Xiao. Ship hull optimization based on PSO training FRBF neural network[J]. Journal of Harbin engineering university, 2017, 38(2):175-180.
[5] 蒙西, 乔俊飞, 韩红桂. 基于ART的RBF网络结构设计[J]. 控制与决策, 2014, 29(10):1876-1880. MENG Xi, QIAO Junfei, HAN Honggui. RBF neural network based on ART neural network[J]. Control and decision, 2014, 29(10):1876-1880.
[6] CECATI C, KOLBUSZ J, Ró?YCKI P, et al. A novel RBF training algorithm for short-term electric load forecasting and comparative studies[J]. IEEE transactions on industrial electronics, 2015, 62(10):6519-6529.
[7] 乔俊飞, 韩红桂. 神经网络结构动态优化设计的分析与展望[J]. 控制理论与应用, 2010, 27(3):350-357. QIAO Junfei, HAN Honggui. Dynamic optimization structure design for neural networks:review and perspective[J]. Control theory & applications, 2010, 27(3):350-357.
[8] TAGLIAFERRI R, STAIANO A, SCALA D. A supervised fuzzy clustering for radial basis function neural networks training[C]//Proceedings of the 9th IFSA World Congress and 20th NAFIPS International Conference. Vancouver, BC, Canada, 2001:1804-1809.
[9] RUBIO J J, PACHECO J. An stable online clustering fuzzy neural network for nonlinear system identification[J]. Neural computing and applications, 2009, 18(6):633-641.
[10] WANG Di, ZENG Xiaojun, KEANE J A. A clustering algorithm for radial basis function neural network initialization[J]. Neurocomputing, 2012, 77(1):144-155.
[11] PLATT J. A Resource-allocating network for function interpolation[J]. Neural computation, 1991, 3(2):213-225.
[12] LU Yingwei, SUNDARARAJAN N, SARATCHANDRAN P. A sequential learning scheme for function approximation using minimal radial basis function neural networks[J]. Neural computation, 1997, 9(2):461-478.
[13] HUANG Guangbin, SARATCHANDRAN P, SUNDARARAJAN N. An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) networks[J]. IEEE transactions on systems, man, and cybernetics, part B (Cybernetics), 2004, 34(6):2284-2292.
[14] HAN Honggui, CHEN Qili, QIAO Junfei. Research on an online self-organizing radial basis function neural network[J]. Neural computing and applications, 2010, 19(5):667-676.
[15] YU Hao, REINER P D, XIE Tiantian, et al. An incremental design of radial basis function networks[J]. IEEE transactions on neural networks and learning systems, 2014, 25(10):1793-1803.
[16] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191):1492-1496.
[17] HAGAN M T, MENHAJ M B. Training feedforward networks with the Marquardt algorithm[J]. IEEE transactions on neural networks, 1994, 5(6):989-993.
[18] WILAMOWSKI B M, YU Hao. Improved computation for Levenberg-Marquardt training[J]. IEEE transactions on neural networks, 2010, 21(6):930-937.
[19] WU Shiqian, ER M J, GAO Yang. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks[J]. IEEE transactions on fuzzy systems, 2002, 9(4):578-594.
[20] MENG Xi, QIAO Junfei, HAN Honggui. An ART-like algorithm for constructing RBF neural networks[C]//Proceedings of 2015 International Joint Conference on Neural Networks. Killarney, Ireland, 2015.
相似文献/References:
[1]章? 钱,李士勇.一种新型自适应RBF神经网络滑模制导律[J].智能系统学报,2009,4(4):339.
 ZHANG Qian,LI Shi-yong.A new adaptive RBFNN sliding mode guidance law for intercepting maneuvering targets[J].CAAI Transactions on Intelligent Systems,2009,4():339.
[2]张秀玲,陈丽杰,逄宗朋,等.RBF神经网络的板形预测控制[J].智能系统学报,2010,5(1):70.
 ZHANG Xiu-ling,CHEN Li-jie,PANG Zong-peng,et al.A predictive system for process control of flatness in rolling mills using a radial basis function network[J].CAAI Transactions on Intelligent Systems,2010,5():70.
[3]陈亮,何为,韩力群.RBF神经网络的行车路径代价函数建模[J].智能系统学报,2011,6(5):424.
 CHEN Liang,HE Wei,HAN Liqun.Radial basis function neural network modeling of the traffic path cost function[J].CAAI Transactions on Intelligent Systems,2011,6():424.
[4]陈亮,何为,韩力群.城市交通最优路径算法[J].智能系统学报,2012,7(2):167.
 CHEN Liang,HE Wei,HAN Liqun.Study on an urban transportation optimal path algorithm[J].CAAI Transactions on Intelligent Systems,2012,7():167.
[5]乔俊飞,安茹,韩红桂.基于相对贡献指标的自组织RBF神经网络的设计[J].智能系统学报,2018,13(2):159.[doi:10.11992/tis.201608009]
 QIAO Junfei,AN Ru,HAN Honggui.Design of self-organizing RBF neural network based on relative contribution index[J].CAAI Transactions on Intelligent Systems,2018,13():159.[doi:10.11992/tis.201608009]

备注/Memo

收稿日期:2017-02-24。
基金项目:国家自然科学基金项目(61533002,61603009);北京市自然科学基金面上项目(4182007);北京工业大学日新人才项目(2017-RX-(1)-04).
作者简介:蒙西,女,1988年生,博士研究生,主要研究方向为人工神经网络、类脑智能模型以及智能信息处理。获得授权国家发明专利1项。发表学术论文5篇,被SCI收录2篇,EI收录3篇;乔俊飞,男,1968年生,教授,博士生导师,主要研究方向为计算智能、智能特征建模、自组织控制和智能优化。在Automatica、IEEE Trans.刊物、自动化学报等权威期刊上发表学术论文百余篇;李文静,女,1985年生,副教授,博士,主要研究方向为神经计算、人工神经网络、模式识别。申请美国发明专利1项。发表学术论文10余篇,被SCI收录8篇。
通讯作者:乔俊飞.E-mail:junfeiq@bjut.edu.cn.

更新日期/Last Update: 2018-06-25
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134