[1]章 钱,李士勇.一种新型自适应RBF神经网络滑模制导律[J].智能系统学报,2009,4(04):339-344.
 ZHANG Qian,LI Shi-yong.A new adaptive RBFNN sliding mode guidance law for intercepting maneuvering targets[J].CAAI Transactions on Intelligent Systems,2009,4(04):339-344.
点击复制

一种新型自适应RBF神经网络滑模制导律(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第4卷
期数:
2009年04期
页码:
339-344
栏目:
出版日期:
2009-08-25

文章信息/Info

Title:
A new adaptive RBFNN sliding mode guidance law for intercepting maneuvering targets
文章编号:
1673-4785(2009)04-0339-06
作者:
章  钱李士勇
哈尔滨工业大学航天学院,黑龙江哈尔滨150001
Author(s):
ZHANG Qian LI Shi-yong
School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
关键词:
自适应控制RBF神经网络导弹拦截滑模控制比例导引律
Keywords:
adaptive control RBFNN missile intercept sliding model control proportional navigation
分类号:
TJ765.3
文献标志码:
A
摘要:
针对导弹拦截问题,提出一种自适应RBF神经网络滑模制导律.首先根据准平行接近原理和变结构控制理论设计滑模面,然后将滑模面作为RBF神经网络的输入变量,输出量即为导弹的加速度.为了使得导弹系统能够到达滑模面,采用自适应算法实时在线调整RBF神经网络的连接权值.该导引律将目标机动视为干扰量,在拦截过程中不需要测量目标加速度,因此该导引律对目标机动具有较强的鲁棒性.在执行上,只用到了视线角速率,因而实现简单.仿真结果表明,所提出的导引律和比例导引相比在脱靶量、拦截时间等方面有了很大的提高.
Abstract:
A new adaptive radial basis function neural network (RBFNN) sliding mode guidance law was proposed for intercepting maneuvering targets. First of all, we designed a slidingsurface using a quasiparallel approach principle and variable structure control theory. We then used the sliding surface to input variables to the RBF neural network. In this case, the output was missile acceleration. In order to place the missile system on the sliding surface, we employed an adaptive algorithm that adjusts in realtime the connection weights of the RBF neural network. The missile acceleration in a given direction was determined by considering the target’s acceleration as a disturbance, and thus it was not necessary to measure the target’s acceleration directly. Therefore, this guidance law has strong robustness to target maneuvering. The new guidance law, which utilizes lineofsight (LOS) measurement only, is simple to implement. Numerical simulations showed that the proposed guidance law yields better performance than proportional navigation.

参考文献/References:

[1】CHAW D, CHOI J Y. Adaptive nonlinear guidance law considering control loop dynamics[J].IEEE Trans on Aerospace and Electronic Systems,2003,39(4):11341143.
 [2]LIANG H W, MA B L. A nonliner adaptive guidance law for missile interceptions[C]//Proceedings of the 27th Chinese Control Conference. Kunming, China, 2008:342344.
[3]CHWA D K, CHOI J Y. Observerbased adaptive guidance law considering target uncertainties and control loop dynamics[J]. IEEE Trans on Control System Technology,2006,14(1):112123.
[4]DI Z, CHUNDI M, WENLI X. Adaptive sliding mode guidance of a homing missile[J].Journal of Guidance, Control and Dynamics, 1999,22(4):589594.
[5]MOON J K, KKIM K, KIM Y. Design of missile guidance law via variable structure control[J]. Journal of Guidance,Control and Dynamics,2001,24(4):659664.
 [6]金鸿章,罗延明. 抑制滑模抖振的新型饱和函数法研究[J]. 智能系统学报,2007,28(3):288291. JIN Hongzhang, LUO Yanming. Investigation of a novel method of saturation function for chattering reduction of sliding mode control[J]. CAAI Transcations on Intelligent Systems,2007,28(3):288291.
 [7]CHEN F C, KHALILl H K. Adaptive control of nonlinear systems using neural networks[J]. International Journal of Control, 1991:55(6):12991317.
 [8]LIU C C, CHEN F C. Adaptive control of nonlinear continuoustime systems using neural networks general relative degree and MIMO cases[J]. International Journal of Control,1993,58(2):317335
 [9]ABEDI M, BOLANDI H. An adaptive RBF neural guidance law for a surface to air missile considering target maneuver and control loop uncertainties[J]. IEEE International Symposium on Industrial Electronics, 2007,11(5):257262.
[10]张秀玲,张志强. 基于动态RBF神经网络的板形板厚综合控制仿真研究[J].智能系统学报,2007,2(2):6568. ZHANG Xiuling ,ZHANG Zhiqiang. Simulation research on strip flatness and thickness control based on dynamic RBF neural networks[J].CAAI Transaction on Intelligent Systems, 2007,2(2):6568.
[11]胡云安,晋玉强. BTT导弹神经自适应控制器设计[J]. 航天控制,2003, 21(1):3741.
 HU Yunan, JIN Yuqiang. Design of nonlinear adaptive control system for BTT missile based on RBF neural networks[J]. Aerospace Control,2003,21(1):3741.
[12]GU W J, ZHAO H C, ZHANG R C.A threedimensional proportional guidance law based on RBF neural network[C]//Proceedings of the 7th World Congress on Intelligent Control and Automation. Chongqing, China,2008:69786982.
[13]周 荻.寻地导弹新型导引律[M].北京:国防工业出版社, 2002:1035.
[14]高为炳. 变结构控制理论基础[M].北京:中国科学技术出版社, 1990:105125.
[15]刘金琨. 滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005:7595.[16]李士勇. 模糊控制—神经控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,2006:216227.

相似文献/References:

[1]张秀玲,陈丽杰,逄宗朋,等.RBF神经网络的板形预测控制[J].智能系统学报,2010,5(01):70.
 ZHANG Xiu-ling,CHEN Li-jie,PANG Zong-peng,et al.A predictive system for process control of flatness in rolling mills using a radial basis function network[J].CAAI Transactions on Intelligent Systems,2010,5(04):70.
[2]罗小元,朱志浩,关新平.不确定非线性时滞系统的自适应滑模控制[J].智能系统学报,2010,5(04):332.
 LUO Xiao-yuan,ZHU Zhi-hao,GUAN Xin-ping.Adaptive sliding mode control for uncertain nonlinear timedelay systems[J].CAAI Transactions on Intelligent Systems,2010,5(04):332.
[3]张文辉,高九州,马静,等.漂浮基空间机器人的径向基神经网络鲁棒自适应控制[J].智能系统学报,2011,6(02):114.
 ZHANG Wenhui,GAO Jiuzhou,MA Jing,et al.The RBF neural network robust adaptive control of a freefloating space robot[J].CAAI Transactions on Intelligent Systems,2011,6(04):114.
[4]陈亮,何为,韩力群.RBF神经网络的行车路径代价函数建模[J].智能系统学报,2011,6(05):424.
 CHEN Liang,HE Wei,HAN Liqun.Radial basis function neural network modeling of the traffic path cost function[J].CAAI Transactions on Intelligent Systems,2011,6(04):424.
[5]陈亮,何为,韩力群.城市交通最优路径算法[J].智能系统学报,2012,7(02):167.
 CHEN Liang,HE Wei,HAN Liqun.Study on an urban transportation optimal path algorithm[J].CAAI Transactions on Intelligent Systems,2012,7(04):167.
[6]马连增,陈雪波,张化光.多智能体网络系统的自适应协调控制[J].智能系统学报,2012,7(03):220.
 MA Lianzeng,CHEN Xuebo,ZHANG Huaguang.Adaptive coordination control for networked multiagent systems[J].CAAI Transactions on Intelligent Systems,2012,7(04):220.
[7]刘振,谭湘敏,易建强,等.浸入与不变方法原理及其在非线性自适应控制中的应用[J].智能系统学报,2013,8(05):400.[doi:10.3969/j.issn.1673-4785.201212012]
 LIU Zhen,TAN Xiangmin,YI Jianqiang,et al.Immersion and invariance theory and its application in nonlinear adaptive control[J].CAAI Transactions on Intelligent Systems,2013,8(04):400.[doi:10.3969/j.issn.1673-4785.201212012]
[8]马正华,张倩倩,陈岚萍.四旋翼飞行器自适应反演姿态控制[J].智能系统学报,2015,10(03):454.[doi:10.3969/j.issn.1673-4785.201405008]
 MA Zhenghua,ZHANG Qianqian,CHEN Lanping.Attitude control of quadrotor aircraft via adaptive back-stepping control[J].CAAI Transactions on Intelligent Systems,2015,10(04):454.[doi:10.3969/j.issn.1673-4785.201405008]
[9]张晓宇,刘彬博.一种离散直接自适应模糊滑模控制[J].智能系统学报,2014,9(02):197.[doi:10.3969/j.issn.1673-4785.201303034]
 ZHANG Xiaoyu,LIU Binbo.A direct adaptive fuzzy sliding mode control method for discrete nonlinear systems[J].CAAI Transactions on Intelligent Systems,2014,9(04):197.[doi:10.3969/j.issn.1673-4785.201303034]
[10]乔俊飞,安茹,韩红桂.基于相对贡献指标的自组织RBF神经网络的设计[J].智能系统学报,2018,13(02):159.[doi:10.11992/tis.201608009]
 QIAO Junfei,AN Ru,HAN Honggui.Design of self-organizing RBF neural network based on relative contribution index[J].CAAI Transactions on Intelligent Systems,2018,13(04):159.[doi:10.11992/tis.201608009]

备注/Memo

备注/Memo:
收稿日期:2009-04-15.
基金项目:国家自然科学基金资助项目(60773065).
通信作者:章 钱.E-mail:qz50306@163.com
作者简介:
章 钱,男,1984年生,硕士研究生,主要研究方向为导航制导与控制、智能控制.
李士勇,男,1943年生,教授、博士生导师,国家模糊控制技术生产力促进中心专业组专家,中国自动化学会智能自动化专业委员会委员,黑龙江省中青年优秀专家,《计算机测量与控制》杂志编委,哈尔滨工业大学学术委员会控制科学与工程分评委会委员.主要研究方向为模糊控制、智能控制、智能优化算法.主持和参加了国家自然科学基金、“973”项目等10项科研项目.获国家星火奖三等奖1项、获部级二等奖2项,三、四等奖共2项.近五年来,在国内外发表学术论文120余篇,其中多篇被SCI、EI和ISTP检索.
更新日期/Last Update: 2009-11-16