[1]陈亮,何为,韩力群.RBF神经网络的行车路径代价函数建模[J].智能系统学报,2011,6(05):424-431.
 CHEN Liang,HE Wei,HAN Liqun.Radial basis function neural network modeling of the traffic path cost function[J].CAAI Transactions on Intelligent Systems,2011,6(05):424-431.
点击复制

RBF神经网络的行车路径代价函数建模(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第6卷
期数:
2011年05期
页码:
424-431
栏目:
出版日期:
2011-10-30

文章信息/Info

Title:
Radial basis function neural network modeling of the traffic path cost function
文章编号:
1673-4785(2011)05-0424-08
作者:
陈亮何为韩力群
北京工商大学 计算机与信息工程学院,北京 100048
Author(s):
CHEN Liang HE Wei HAN Liqun
College of Computer and Information Engineering, Beijing Commercial and Industrial University, Beijing 100048, China
关键词:
智能交通路径代价函数行车路线优化RBF神经网络图论
Keywords:
intelligent transportation path cost function vehicle route optimization radial basis function neural network graph theory
分类号:
TP391.4
文献标志码:
A
摘要:
行车路线优化是城市智能交通系统的研究热点之一,对整个交通系统的优化起着重要作用.分析了影响行车时间的各种因素,结合图论中最短路径算法,建立了基于RBF神经网络的路径代价函数模型.基于该函数模型,可以计算出交通图中任意给定两地间的时间最优路径.将该模型应用于实际路况进行有效性验证,得到了有实用价值的结果,说明了该模型的正确性和有效性.
Abstract:
Vehicle route optimization is one of the hot topics in research on urban intelligent transportation systems (ITS), and it plays an important role in the optimization of the entire transportation system. This paper analyzed various factors that affect the travel time and established a path cost function model with an radial basis function neural network, based on the shortest paths algorithms in graph theory. By this function model, the timeoriented optimal path between any two given places on a traffic map can be calculated. The model was applied to actual traffic to validate the effectiveness, and its results are of practical value, showing the correctness and validity of the model.

参考文献/References:

[1]张渭军,王华.城市道路最短路径的Dijkstra算法优化[J].长安大学学报:自然科学版, 2005, 25(6): 6265.
ZHANG Weijun, WANG Hua. Optimation Dijkstra arithmetic for shortest path of urban traffic net[J]. Journal of Chang’an University: Natural Science Edition, 2005, 25(6): 6265.
[2]姜桂艳,郑祖舵.基于记忆机制的动态交通路径优化算法[J].吉林大学学报:工学版, 2007, 37(5): 10431048.
JIANG Guiyan, ZHENG Zuduo. Dynamic traffic path optimization algorithm based on mnemonic mechanism[J]. Journal of Jilin University: Engineering and Technology Edition, 2007, 37(5): 10431048.
[3]HOROBA C, SUDHOLT D. Ant colony optimization for stochastic shortest path problems[C]//Proceedings of the 12th Annual Genetic and Evolutionary Computation Conference. New York, USA: ACM, 2008: 14651472.
[4]ZAKZOUK A A A, ZAHER H M, ELDEEN R A Z. An ant colony optimization approach for solving shortest path problem with fuzzy constraints[C]//2010 The 7th International Conference on Informatics and Systems. Cairo, Egypt, 2010: 12011208.
[5]王泉啸,蔡先华.动态最佳路径算法研究[J].城市勘测, 2009, 73(1): 7375.
WANG Quanxiao, CAI Xianhua. Study on the algorithm of dynamic optimal route[J]. Urban Geotechnical Investigation & Surveying, 2009, 73(1): 7375.
[6]徐俊明.图论及其应用[M].3版.合肥:中国科学技术大学出版社, 2010: 2153.
[7]刘海燕.智能交通系统的车辆行驶最佳路径算法[J].北京工商大学学报: 自然科学版, 2006, 24(1): 5355.
LIU Haiyan. Best running path arithmetic of vehicles in intelligent transport system[J]. Journal of Beijing Technology and Business University: Natural Science Edition, 2006, 24(1): 5355.
[8]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社, 2006: 127143.
[9]马君,刘晓东,孟颖.基于神经网络的城市交通流预测研究[J].电子学报, 2009, 37(5): 10921094.
MA Jun, LIU Xiaodong, MENG Ying. Research of urban traffic flow forecasting based on neural network[J]. Acta Electronica Sinica, 2009, 37(5): 10921094.
[10]朱文兴,贾磊,丁绪东,等.城市交通网络中的路径优化研究[J].山东大学学报: 工学版, 2005, 35(1): 7477.
ZHU Wenxing, JIA Lei, DING Xudong, et al. Research on the route optimization in urban traffic network[J]. Journal of Shandong University: Engineering Science, 2005, 35(1): 7477.
[11]韩力群.人工神经网络理论、设计及应用[M].2版.北京:化学工业出版社, 2007: 164191.
[12]傅荟璇,赵红.MATLAB神经网络应用设计[M].北京:机械工业出版社, 2010: 6263.
[13]刘张雷,史忠科.城市动态时间最短路径诱导系统实现研究[J].控制工程, 2010, 17(3): 351355.
LIU Zhanglei, SHI Zhongke. Implementation of urban tmiedependent shortest route guidance system[J]. Control Engineering of China, 2010, 17(3): 351355.
[14]罗嵩,王坚.智能交通系统的最优路径搜索算法的研究与实现[J]. 机电产品开发与创新, 2008, 21(2): 1012.
LUO Song, WANG Jian. Optimal path search study and practice based on the intelligent transportation systems[J]. Development and Innovation of Machinery and Electrical Products, 2008, 21(2): 1012.
[15]PETTIE S, RAMACHANDRA V. A shortest path algorithm for realweighted undirected graphs[J]. SIAM Journal of Computing, 2005, 34(6): 13981427.
[16]王海英,黄强,李传涛,等.图论算法及其MATLAB实现[M].北京:北京航空航天大学出版社, 2010: 1218.
[17]王晓丽,杨兆升,吕旭涛,等.平行四边形限制最短路径算法及其在交通网络中的应用[J].吉林大学学报:工学版, 2006, 36(1): 123127.
 WANG Xiaoli, YANG Zhaosheng, LV Xutao. Shortest path algorithm based on limiting parallelogram[J]. Journal of Jilin University: Engineering and Technology Edition, 2006, 36(1): 123127.
[18]魏二虎,贾满,李林燕.最短路径算法的改进方法研究[J].测绘信息与工程, 2007, 32(4): 4042.
 WEI Erhu, JIA Man, LI Linyan. On improvements for shortest path algorithm[J]. Journal of Geomatics, 2007, 32(4): 4042.

相似文献/References:

[1]张立东,王英龙.公交优先模糊控制算法研究[J].智能系统学报,2007,2(03):59.
 ZHANG Li-dong,WANG Ying-long.Study of a fuzzy control algorithm for public transit pri ority[J].CAAI Transactions on Intelligent Systems,2007,2(05):59.
[2]张凤静,周建江,夏伟杰.基于双目立体视觉的汽车安全车距测量方法[J].智能系统学报,2011,6(01):79.
 ZHANG Fengjing,ZHOU Jianjiang,XIA Weijie.Research of vehicle security spacing measurements based on binocular stereovision[J].CAAI Transactions on Intelligent Systems,2011,6(05):79.
[3]史晓鹏,何为,韩力群.采用Hough变换的道路边界检测算法[J].智能系统学报,2012,7(01):81.
 SHI Xiaopeng,HE Wei,HAN Liqun.A road edge detection algorithm based on the Hough transform[J].CAAI Transactions on Intelligent Systems,2012,7(05):81.
[4]陈亮,何为,韩力群.城市交通最优路径算法[J].智能系统学报,2012,7(02):167.
 CHEN Liang,HE Wei,HAN Liqun.Study on an urban transportation optimal path algorithm[J].CAAI Transactions on Intelligent Systems,2012,7(05):167.
[5]毕晓君,刘国安,肖婧.基于自适应差分进化的干线交通信号协调控制[J].智能系统学报,2012,7(05):437.
 BI Xiaojun,LIU Guoan,XIAO Jing.Coordination and control of arterial traffic signalsbased on adaptive differential evolution[J].CAAI Transactions on Intelligent Systems,2012,7(05):437.

备注/Memo

备注/Memo:
收稿日期:2011-04-22.
通信作者:陈亮.E-mail:newboy_01@163.com.
作者简介:
陈亮,男,1986年生,硕士研究生,主要研究方向为人工神经网络、智能交通.
何为,男,1953年生,高级工程师,IEEE会员,中国人工智能学会理事、智能产品与产业工作委员会秘书长,中国计量测试学会高级会员.主要研究方向为非电量检测技术、计算机测控技术、嵌入式技术应用,主持或参与国家科技攻关、火炬计划、省部级、横向等各类科研项目30余项,发表学术论文30余篇,获国家发明专利3项.
韩力群,女,1953年生,教授,中国人工智能学会副理事长.主要研究方向为智能信息处理与图像工程技术,主持各类科研项目30余项,获国家发明专利3项、北京发明创新大赛银奖1项.发表学术论文120余篇,出版专著10部.
更新日期/Last Update: 2011-11-16