[1]曲国华,张振华,徐岭,等.多Agent的复杂经济仿真系统构建策略[J].智能系统学报编辑部,2016,11(2):163-171.[doi:10.11992/tis.201509019]
 QU Guohua,ZHANG Zhenhua,XU Ling,et al.A strategy to construct multi-Agent-based complex economic simulation systems[J].CAAI Transactions on Intelligent Systems,2016,11(2):163-171.[doi:10.11992/tis.201509019]
点击复制

多Agent的复杂经济仿真系统构建策略(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
第11卷
期数:
2016年2期
页码:
163-171
栏目:
出版日期:
2016-04-25

文章信息/Info

Title:
A strategy to construct multi-Agent-based complex economic simulation systems
作者:
曲国华1 张振华2 徐岭3 刘增良1 曲卫华1 张汉鹏4 张强1
1. 北京理工大学 管理与经济学院, 北京 100081;
2. 广东外语外贸大学 经济贸易学院, 广东 广州 510006;
3. 北京石油化工学院 经济管理学院, 北京 102600;
4. 西南财经大学 工商管理学院, 四川 成都 610074
Author(s):
QU Guohua1 ZHANG Zhenhua2 XU Ling3 LIU Zengliang1 QU Weihua1 ZHANG Hanpeng4 ZHANG Qiang1
1. School of Management and Economics, Beijing Institute of Technology, Beijing 100081,China;
2. School of Economics and Trade, Guangdong University of Foreign Studies, Guangzhou 510006, China;
3. School of Management and Economics, Beijing Institute of Petrochemical of Technology, Beijing 102600, China;
4. School of Business Administration, Southwestern University of Finance and Economics University, Chengdu 610074, China
关键词:
Agent复杂经济系统微观模型结点四部门复杂经济仿真系统
Keywords:
AgentCESMNodeFEAS
分类号:
TP39
DOI:
10.11992/tis.201509019
摘要:
为了给复杂经济仿真系统找到通用的理论模型,通过对国内Agent经济系统的研究,提出复杂经济系统微观模型(CESM)。采用智能Agent CESM和亚小CESM模拟的实现方式,界定了个人、企业、政府、国外贸易的经济行为,采用模型转换和代码生成支持计算实验。根据所提出的CESM策略,设计和实现四部门复杂经济仿真系统(FEAS),最后用经济学的观点对结果进行解释,结果表明,CESM最吸引人的地方是它通过异质性微观Agent来涌现宏观特征。系统的仿真过程表明提出的CESM策略是一种自治的、贴近复杂经济仿真系统问题研究的建模方法,可以在集成项目的工作中发挥重要的作用。
Abstract:
To find a suitable theory model for complex economic simulation system, complex economic system microcosmic model (CESM) was proposed through the domestic economic system for research and Agent classification, analyzing CESM mechanism. An implementation approach used CESM-simulation and sub-CESM simulation based on intelligent agent and person, enterprise, government and foreign trade actions was defined, and the simulation models are generated by model transformation in order to support computational experiments. Four departments complex economic simulation system FEAS designing and implementation is developed according to CESM strategy proposed. Finally, simulation results are explained from Macroeconomics view, and the results show that the most attractive characteristics of CESM is that it can analyze its macro character by research heterogeneous agents behavior. FEAS simulation testifies that CESM strategy proposed is self contained, and it plays an important role in the integration of simulation system project.

参考文献/References:

[1] 范如国, 叶菁, 杜靖文. 基于Agent的计算经济学发展前沿: 文献综述[J]. 经济评论, 2013(2): 145-150. FAN Ruguo, YE Jing, DU Jingwen. Frontier development of Agent-based computational economics: a survey[J]. Economic review, 2013(2): 145-150.
[3] ARIFOVIC J, KARAIVANOV A. Learning by doing vs. learning from others in a principal-agent model[J]. Journal of economic dynamics and control, 2010, 34(10): 1967-1992.
[3] 胡代平, 王浣尘. 基于Agent的宏观经济决策支持系统[J]. 系统工程理论与实践, 2002, 22(1): 33-37. HU Daiping, WANG Huanchen. An Agent-based macro-economy decision support system[J]. Systems engineering-theory & practice, 2002, 22(1): 33-37.
[4] ARTHUR W B, HOLLAND J H, LEBARON B, et al. Asset pricing under endogenous expectations in an artificial stock market [D]. London: Brunel University, 1996: 25-30.
[5] 毛海军, 唐焕文, 张杰. 基于多Agent的宏观经济智能预测决策支持系统研究[J]. 运筹与管理, 2003, 12(6): 16-21. MAO Haijun, TANG Huanwen, ZHANG Jie. Research on the multi-Agent based macro-economy intelligent forecast decision support system[J]. Operations research and management science, 2003, 12(6): 16-21.
[6] 王绍坤. 金融网络中基于Agent的企业经济行为资金流动仿真研究[D]. 上海: 上海交通大学, 2009: 12-20. WANG Shaokun. Research on Agent-based corporate account capital flow system simulation in financial network[D]. Shanghai: Shanghai Jiaotong University, 2009: 12-20.
[7] 陈彬, 张鹏, 张烙兵,等. 面向应急管理的人工社会元建模方法[J]. 系统工程理论与实践, 2015, 35(10): 2490-2503. CHEN Bin, ZHANG Peng, ZHANG Luobing, et al. An emergency management oriented meta-modeling approach for modeling artificial society[J]. Systems engineering-theory & practice, 2015, 35(10): 2490-2503.
[8] 徐敏杰, 胡兆光. 基于Agent的经济政策对电力消费影响模拟实验[J]. 系统管理学报, 2011, 20(5): 539-548. XU Minjie, HU Zhaoguang. Simulating impact of macroeconomic policy on electricity consumption based on multi-Agent[J]. Journal of systems & management, 2011, 20(5): 539-548.
[9] 朱永彬, 薛耀文, 高慧敏,等. 基于智能Agent的金融交易模拟终端设计与实现[J]. 计算机技术与发展, 2008, 18(8): 249-253. ZHU Yongbin, XUE Yaowen, GAO Huimin, et al. Design and implementation of finance business simulation terminal based on Agent[J]. Computer technology and development, 2008, 18(8): 249-253.
[10] BASU N, PRYOR R, QUINT T. ASPEN: A microsimulation model of the economy[J]. Computational economics, 1998, 12(3): 223-241.
[11] EPSTEIN J M, AXTELL R L. Growing artificial societies: social science from the bottom up[M]. Washington, DC: Brookings Institution Press, 1996: 45-62.
[12] GILBERT N. Emergence in social simulation[M]//GILBERT N, CONTE R. Artificial Societies: the Computer Simulation of Social Life. London: UCL Press, 1995: 144-156.
[13] MINSKY M. Society of Mind: a response to four reviews[M]//CLANCEY W J, SMOLIAR S W, STEFIK M J. Contemplating Minds: a forum for artificial intelligence. Cambridge, MA: MIT Press, 1994: 252-278.
[14] GUPTA A, KAPUR V. Microsimulation in government policy and forecasting[M]. New York: Elsevier Science Ltd, 2000: 56-80.
[15] 李善同, 高嘉陵. 微观分析模拟模型及其应用[M]. 北京: 机械工业出版社, 1999: 22-30.
[16] HAVEMAN R H, HOLLENBECK K. Microeconomic simulation models for public policy analysis[M]. New York: Academic Press, 1980: 45-62.
[17] GIANNARELLI L. An Analyst’s Guide to TRIM2: the transfer income model[M]. Washington, DC: The Urban Institute, 1992: 22-45.
[18] 史忠植. 高级人工智能[M]. 北京: 科学出版社, 1998: 34-42.
[19] ZHANG L B, QIU X G, ZHANG P, et al. Design and realization of agent action schedule component in artificial society simulation[C]//Chinese Automation Congress (CAC), 2013. Changsha: 2013: 274-279.
[20] 曲国华, 薛耀文. 基于Agent四部门经济循环模型仿真系统研究[J]. 计算机技术与发展, 2011, 21(4): 210-213. QU Guohua, XUE Yaowen. Study of Agent-based four departments’ economy cycling model analogue system[J]. Computer technology and development, 2011, 21(4): 210-213.
[21] 尹翰坤, 尹超, 王伟,等. 基于Multi-Agent的制造资源云服务化封装方法及适配器研究[J]. 计算机集成制造系统, 2014, 20(12): 3182-3188. YIN Hankun, YIN Chao, WANG Wei, et al. Cloud service encapsulation adapter for manufacturing resource based on Multi-Agent[J]. Computer integrated manufacturing systems, 2014, 20(12): 3182-3188.
[22] 孙彬, 陈秋双. 基于多Agent的多式联运运输决策与动态协调[J]. 计算机集成制造系统, 2013, 19(12): 3193-3201. SUN Bin, CHEN Qiushuang. Transportation decision and dynamic coordination for multi-modal transport based on multi-Agent system[J]. Computer integrated manufacturing systems, 2013, 19(12): 3193-3201.
[23] 高鸿业. 西方经济学[M]. 北京: 中国人民大学出版社, 2006: 12-45.

相似文献/References:

[1]柯 佳,程显毅,李晓薇.基于用户反馈的智能合作过滤模型的研究[J].智能系统学报编辑部,2007,2(01):59.
 KE Jia,CHENG Xian-yi,LI Xiao-wei.Research of Agent collaborative filtering model based on user′s feedback[J].CAAI Transactions on Intelligent Systems,2007,2(2):59.
[2]陶倩,马刚,史忠植.基于Agent的专家系统推理模型[J].智能系统学报编辑部,2013,8(02):135.[doi:10.3969/j.issn.1673-4785.201210043]
 TAO Qian,MA Gang,SHI Zhongzhi.Research on the expert system reasoning model based on Agent[J].CAAI Transactions on Intelligent Systems,2013,8(2):135.[doi:10.3969/j.issn.1673-4785.201210043]
[3]郭艳燕,童向荣,张楠,等.基于演化博弈论的网络信息传播群体行为分析[J].智能系统学报编辑部,2016,11(4):487.[doi:10.11992/tis.201606001]
 GUO Yanyan,TONG Xiangrong,ZHANG Nan,et al.Analysis of network information propagation population behavior based on evolutionary game theory[J].CAAI Transactions on Intelligent Systems,2016,11(2):487.[doi:10.11992/tis.201606001]
[4]毛莉娜,李卫华.利用智能引导和KDML增强可拓模型人机建模能力研究[J].智能系统学报编辑部,2017,12(03):348.[doi:10.11992/tis.201610017]
 MAO Lina,LI Weihua.Research on enhancing the human-machine modeling ability for an extension model using the intelligent guide and KDML[J].CAAI Transactions on Intelligent Systems,2017,12(2):348.[doi:10.11992/tis.201610017]

备注/Memo

备注/Memo:
收稿日期:2015-9-20;改回日期:。
基金项目:国家自然科学基金项目(61175122,71071018,71201089);北京市哲学社会科学规划项目(SZ201410017006);广东省哲学社科和软科学基金项目(GD12XGL14,2015A070704051,2014A030313575);教育部人文社科项目(14XJC630010).
作者简介:曲国华,男,1982年生,博士研究生,主要研究方向为模糊决策、人工智能。先后参与国家自然科学基金等项目多项。发表学术论文10余篇,其中被SCI检索2篇,EI检索1篇,CSSCI检索6篇;张振华,男,1972年生,副教授,博士,中国计算机学会会员、中国人工智能学会粗糙集与软计算专委会委员。主要研究方向为数据挖掘、智能计算、多属性决策、软件项目风险、服务外包和战略决策。主持教育部和广东省等各级纵向基金项目12项,目前在研省部级项目5项。作为核心成员参与完成国家自然科学基金项目4项,省部级项目6项。发表学术论文40余篇,其中被SCI和EI检索30余篇;徐岭,女,1974年生,博士后,主要研究方向为网络经济、气候变化与低碳经济、环境与资源保护法。近3年主持和参与国家自然科学基金项目1项,国家社会科学基金项目1项,北京市哲学社会科学基金项目2项。发表学术论文10余篇。
通讯作者:徐岭.E-mail:xuling@bipt.edu.cn.
更新日期/Last Update: 1900-01-01