[1]张平,刘三阳,朱明敏.基于人工蜂群算法的贝叶斯网络结构学习[J].智能系统学报,2014,9(03):325-329.[doi:10.3969/j.issn.1673-4785.201310014]
 ZHANG Ping,LIU Sanyang,ZHU Mingmin.Structure learning of Bayesian networks by use of the artificial bee colony algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(03):325-329.[doi:10.3969/j.issn.1673-4785.201310014]
点击复制

基于人工蜂群算法的贝叶斯网络结构学习(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第9卷
期数:
2014年03期
页码:
325-329
栏目:
学术论文—智能系统
出版日期:
2014-06-25

文章信息/Info

Title:
Structure learning of Bayesian networks by use of the artificial bee colony algorithm
作者:
张平 刘三阳 朱明敏
西安电子科技大学 数学与统计学院, 陕西 西安 710071
Author(s):
ZHANG Ping LIU Sanyang ZHU Mingmin
School of Mathematics and Statistics, Xidian University, Xi’an 710071, China
关键词:
贝叶斯网络NP难人工蜂群算法遗传算子结构学习
Keywords:
Bayesian networksNP-hardartificial bee colonygenetic operatorsstructure learning
分类号:
TP181
DOI:
10.3969/j.issn.1673-4785.201310014
摘要:
从数据集中学习贝叶斯网络结构是一个NP难问题。针对此问题提出基于遗传算子的人工蜂群算法。首先, 将贝叶斯网络结构映射为一种二进制编码; 其次, 根据贝叶斯网络的结构特点, 设计了蜜源的更新策略, 从而将学习贝叶斯网络结构的过程转化为蜂群寻找最优蜜源的过程。实验结果表明, 该算法应用于贝叶斯网络结构学习中的有效性。
Abstract:
The learning structure of Bayesian networks from a data set is an NP-hard problem. To deal with this problem, an artificial bee colony algorithm based on genetic operators is proposed in this paper. The structure of the Bayesian network is mapped to binary encoding, and the updated strategy of nectar is designed according to the characteristics of the Bayesian network structure. Thus the process of structure learning of the Bayesian network is transformed into the process of the bee colony finding the optimal nectar. The experimental results show that the algorithm is valid in the structure learning of Bayesian networks.

参考文献/References:

[1] CAI Z, SUN S, SI S, et al. Identifying product failure rate based on a conditional Bayesian network classifier[J]. Expert Systems with Applications, 2011, 38(5):5036-5043.
[2] HSIEH N C, HUNG L P. A data driven ensemble classifier for credit scoring analysis[J]. Expert Systems with Applications, 2010, 37(1):534-545.
[3] De CAMPOS L M. Independency relationships and learning algorithms for singly connected networks[J]. Journal of Experimental & Theoretical Artificial Intelligence, 1998, 10(4):511-549.
[4] De CAMPOS L M, HUETE J F. A new approach for learning belief networks using independence criteria[J]. International Journal of Approximate Reasoning, 2000, 24(1):11-37.
[5] COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4):309-347.
[6] HECKERMAN D, GEIGER D, CHICKERING D M. Learning Bayesian networks:The combination of knowledge and statistical data[J]. Machine Learning, 1995, 20(3):197-243.
[7] LAM W, BACCHUS F. Learning Bayesian belief networks:an approach based on the MDL principle[J]. Computational Intelligence, 1994, 10(3):269-293.
[8] COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4):309-347.
[9] CHICKERING D M. Optimal structure identification with greedy search[J]. The Journal of Machine Learning Research, 2003(3):507-554.
[10] KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Erciyes university, engineering faculty, computer engineering department, 2005.
[11] KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization:artificial bee colony (ABC) algorithm[J]. Journal of Global Optimization, 2007, 39(3):459-471.
[12] KARABOGA D, BASTURK B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied soft Computing, 2008, 8(1):687-697.
[13] KARABOGA D, AKAY B. Artificial bee colony (abc) algorithm on training artificial neural networks[C]//2007 IEEE 15th Signal Processing and Communications Applications. Eskisehir:IEEE Press, 2007:1-4.
[14] KARABOGA D, OZTURK C. Neural networks training by artificial bee colony algorithm on pattern classification[J]. Neural Netw World, 2009, 19(3):279-292.
[15] OZTURK C, KARABOGA D. Hybrid artificial bee colony algorithm for neural network training[C]//2011 IEEE Congress on Evolutionary Computation. New Orleans, LA:IEEE Press, 2011:84-88.
[16] ABACHIZADEH M, YAZDI M, YOUSEFI-KOMA A. Optimal tuning of PID controllers using artificial bee colony algorithm[C]//2010 IEEE/ASME International Conference on Advanced Intelligent. Montreal:IEEE Press, 2010:379-384.
[17] LARRANAGA P, POZA M, YURRAMENDI Y. et al. Structure learning of Bayesian networks by genetic algorithms:a performance analysis of control parameters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(9):912-926.
[18] 许丽佳, 黄建国, 王厚军, 等. 混合优化的贝叶斯网络结构学习[J]. 计算机辅助设计与图形学报, 2009, 21(5):633-639. XU Lijia, HUANG Jianguo, WANG Houjun, et al. Hybrid optimized algorithm for learning Bayesian network structure[J]. Journal of Computer-Aided Design & Computer Graphics, 2009, 21(5):633-639.
[19] CHOW C, LIU C. Approximation discrete probability distributions with dependence trees[J]. IEEE Transactions on Information Theory, 1968, 14(3):462-467.

相似文献/References:

[1]杨有龙,刘 蔚,吴 艳.贝叶斯网络的非忠实性分布[J].智能系统学报,2009,4(04):335.
 YANG You-long,LIU Wei,WU Yan.Unfaithful distributions with respect to Bayesian networks[J].CAAI Transactions on Intelligent Systems,2009,4(03):335.
[2]李冰寒,高晓利,刘三阳,等.利用互信息学习贝叶斯网络结构[J].智能系统学报,2011,6(01):68.
 LI-Binghan,GAO-Xiaoli,LIU-Sanyang,et al.Learning Bayesian network structures based on mutual information[J].CAAI Transactions on Intelligent Systems,2011,6(03):68.
[3]郭坤,王浩,姚宏亮,等.逻辑回归分析的马尔可夫毯学习算法[J].智能系统学报,2012,7(02):153.
 GUO Kun,WANG Hao,YAO Hongliang,et al.An algorithm for a Markov blanket based on logistic regression analysis[J].CAAI Transactions on Intelligent Systems,2012,7(03):153.
[4]段海滨,马冠军,赵振宇.基于模糊规则和动态蚁群贝叶斯网络的无人作战飞机态势评估[J].智能系统学报,2013,8(02):119.[doi:10.3969/j.issn.1673-4785.201211031]
 DUAN Haibin,MA Guanjun,ZHAO Zhenyu.UCAV situation assessment based on fuzzy rules and dynamic ant colony-Bayesian network[J].CAAI Transactions on Intelligent Systems,2013,8(03):119.[doi:10.3969/j.issn.1673-4785.201211031]
[5]张兴,陈昊.差分隐私的高维数据发布研究综述[J].智能系统学报,2021,16(6):989.[doi:10.11992/tis.202104023]
 ZHANG Xing,CHEN Hao.A research review of high-dimensional data publishing based on a differential privacy model[J].CAAI Transactions on Intelligent Systems,2021,16(03):989.[doi:10.11992/tis.202104023]

备注/Memo

备注/Memo:
收稿日期:2013-11-04。
基金项目:国家自然科学基金资助项目(61075055);西安电子科技大学基本科研业务基金资助项目(K5051270013).
作者简介:刘三阳,男,1959年生,教授,博士生导师,主要研究方向为优化理论及其应用、网络算法。主持多项国家级项目,发表多篇学术论文;朱明敏,女,1985年生,讲师,博士后,主要研究方向为优化算法及其在贝叶斯网络结构学习中的应用。
通讯作者:张平,女,1988年生,硕士研究生,主要研究方向为优化算法、贝叶斯网络结构学习,E-mail:pzhangxdedu@163.com。
更新日期/Last Update: 1900-01-01