[1]马正华,张倩倩,陈岚萍.四旋翼飞行器自适应反演姿态控制[J].智能系统学报,2015,10(03):454-459.[doi:10.3969/j.issn.1673-4785.201405008]
 MA Zhenghua,ZHANG Qianqian,CHEN Lanping.Attitude control of quadrotor aircraft via adaptive back-stepping control[J].CAAI Transactions on Intelligent Systems,2015,10(03):454-459.[doi:10.3969/j.issn.1673-4785.201405008]
点击复制

四旋翼飞行器自适应反演姿态控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第10卷
期数:
2015年03期
页码:
454-459
栏目:
学术论文—智能系统
出版日期:
2015-06-25

文章信息/Info

Title:
Attitude control of quadrotor aircraft via adaptive back-stepping control
作者:
马正华 张倩倩 陈岚萍
常州大学 信息科学与工程学院, 江苏 常州 213164
Author(s):
MA Zhenghua ZHANG Qianqian CHEN Lanping
College of Information Science and Engineering, Changzhou University, Changzhou 213164, China
关键词:
四旋翼飞行器运动学模型自适应反演控制姿态控制反演法自适应控制
Keywords:
quadrotor aircraftkinematics modelingadaptive back-stepping controlattitude controlback-steppingadaptive control
分类号:
TP391.9
DOI:
10.3969/j.issn.1673-4785.201405008
文献标志码:
A
摘要:
为了解决四旋翼飞行器控制系统的姿态稳定控制问题,首先根据牛顿第二定律和欧拉方程建立了四旋翼飞行器运动学模型,并针对姿态控制问题对模型进行简化,然后把姿态控制系统分成3个二阶子系统,运用反演法对各个子系统分别设计,进一步运用自适应控制律引入积分项,补偿由模型简化引起的模型误差,从而提高系统对外部扰动和系统模型不确定性的鲁棒性.最后通过Matlab仿真验证出,改进的自适应积分反演控制器在四旋翼的姿态控制中对外部干扰信号有较强抑制作用,可以保证在模型参数不确定的情况下的全局稳定性.
Abstract:
In order to solve the stabilized attitude control problem of quadrotor aircraft, a kinematics model is established according to Newton’s second law and Euler equation. Next, the model is simplified to solve the attitude control problem. After that, the attitude control system is divided into 3 second-order subsystems and each subsystem is designed by the back-stepping control method. Next, an integral term is introduced by applying the adaptive control law to compensate the errors caused by simplified model, thereby improving robustness of the system against external disturbance and uncertainty of the system model. The simulation results using Matlab show that the stabilized attitude control of quadrotor aircraft has a strong inhibitory effect using the improved adaptive integral back-stepping controller and it guarantees global stability in the case of uncertain model parameters.

参考文献/References:

[1] MUNGUIA R, GRAU A. An attitude and heading reference system (AHRS) based in a dual filter[C]//2011 IEEE Conference on Emerging Technologies & Factory Automation (ETFA). Toulouse, French, 2011: 1-8.
[2] LEISHMAN J G. The breguet-richet quad-rotor helicopter of 1907[J]. AHS International Directory, 2001: 1-4.
[3] BOUABDALLAH S, SIEGWART R. Full Control of a quadrotor[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA: IEEE, 2007: 153-158.
[4] GONZÁLEZ-VÁZQUEZ S, MORENO-VALENZUELA J. A new nonlinear PI/PID controller for quadrotor posture regulation[C]//2010 Electronics, Robotics and Automotive Mechanics Conference. Morelos, Mexico, 2010: 642-647.
[5] 乔维维. 四旋翼飞行器飞行控制系统研究与仿真[D]. 太原: 中北大学, 2012: 157-168. QIAO Weiwei. Research and simulation on four rotor helicopter flight control system[D]. Taiyuan, China: North University of China, 2012: 157-168.
[6] 岳基隆. 四旋翼无人机自适应控制方法研究[D]. 长沙: 国防科学技术大学, 2010: 128-135.YUE Jilong. Research on adaptive control method for quadrotor UAV[D]. Changsha, China: National University of Defense Technology, 2007: 128-135.
[7] SALIH A L, MOGHAVVEMI M, MOHAMED H A F, et al. Flight PID controller design for a UAV quadrotor[J]. Scientific Research and Essays, 2010, 5(23): 3660-3667.
[8] 毕胜. 变结构飞行器的多刚体建模和姿态控制[D]. 合肥: 中国科学技术大学, 2011: 5-20.BI Sheng. Multi-rigid-body modeling and attitude control of variable structure aircraft[D]. Hefei, China: University of Science and Technology of China, 2011: 5-20.
[9] LEE H. Robust adaptive fuzzy control by backstepping for a class of MIMO nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(2): 265-275.
[10] YOON S H, KIM Y D, PARK S H. Constrained adaptive backstepping controller design for aircraft landing in wind disturbance and actuator stuck[J]. International Journal of Aeronautical and Space Sciences, 2012, 13(1): 74-89.
[11] BOUSSERHANE I K, Hazzab A, MAZARI B, et al. Mover position control of linear induction motor drive using adaptive backstepping controller with integral action[J]. Tamkang Journal of Science and Engineering, 2010, 12(1): 17-18.
[12] PALUNKO P, FIERRO F. Adaptive control of a quadrotor with dynamic changes in the center of gravity[C]//Proceedings of the 18th IFAC World Congress. Milano, Italy, 2011: 2626-2631.
[13] ALTUG E, OSTROWSKI J P, TAYLOR C J. Quadrotor control using dual camera visual feedback[C]//2003 IEEE International Conference on Robotics & Automation. Taipei, China: 4294-4299.
[14] JONES D I, WHITWORTHB C C, EARPC G K, et al. A laboratory test-bed for an automated power line inspection system[J]. Control Engineering Practice, 2005, 13(7): 835-851.
[15] HAMEL T, MAHONY R, LOZANO R, et al. Dynamic modeling and configuration stabilization for an X4-Flyer[C]//Proceeding of IFAC 15th Triennial World Congress. Barcelona, Spain, 2002: 665-670.
[16] ZHANG Y M, CHAMSEDDINE A, RABBATH C A, et al. Development of advanced FDD and FTC, techniques with application to an unmanned quadrotor helicopter testbed[J]. Journal of the Franklin Institute, 2013, 350(9): 2396-2422.

相似文献/References:

[1]任孝平,蔡自兴.基于阿克曼原理的车式移动机器人运动学建模[J].智能系统学报,2009,4(06):534.[doi:10.3969/j.issn.1673-4785.2009.06.011]
 REN Xiao-ping,CAI Zi-xing.Using the Ackerman principle for kinematic modeling of wheeled mobile robots[J].CAAI Transactions on Intelligent Systems,2009,4(03):534.[doi:10.3969/j.issn.1673-4785.2009.06.011]
[2]吴垠,刘忠信,陈增强,等.一种基于模糊方法的领导-跟随型多机器人编队控制[J].智能系统学报,2015,10(04):533.[doi:10.3969/j.issn.1673-4785.201407014]
 WU Yin,LIU Zhongxin,CHEN Zengqiang,et al.Formation control of leader-following type multi-robotbased on fuzzy control method[J].CAAI Transactions on Intelligent Systems,2015,10(03):533.[doi:10.3969/j.issn.1673-4785.201407014]
[3]王平,许炳招,娄保东,等.仿生机器鱼运动学模型优化与实验[J].智能系统学报,2017,12(02):196.[doi:10.11992/tis.201604034]
 WANG Ping,XU Bingzhao,LOU Baodong,et al.Ptimization and experimentation on the kinematic model of bionic robotic fish[J].CAAI Transactions on Intelligent Systems,2017,12(03):196.[doi:10.11992/tis.201604034]
[4]牛国臣,张云霄.连续型机器人运动学仿真和操控系统设计[J].智能系统学报,2020,15(6):1058.[doi:10.11992/tis.202005031]
 NIU Guochen,ZHANG Yunxiao.Kinematics simulation and control system design of continuous robot[J].CAAI Transactions on Intelligent Systems,2020,15(03):1058.[doi:10.11992/tis.202005031]

备注/Memo

备注/Memo:
收稿日期:2014-5-13;改回日期:。
基金项目:国家自然科学基金资助项目(61201096);常州市科技计划项目(CJ20110023, CM20123006).
作者简介:马正华,男,1962年生,教授,主要研究方向为嵌入式系统应用、计算机控制技术、电力电子技术,曾获江苏省科技进步三等奖2项,中国机械工业联合会科技进步三等奖1项.发表学术论文100余篇.张倩倩,女,1988年生,硕士研究生,主要研究方向为计算机软件与理论、无人机控制系统. 陈岚萍,女,1974年生,副教授,博士,主要研究方向为复杂系统稳定性与跟踪控制、生产过程的优化控制及运动轨迹跟踪控制.完成或参与国家、省级课题项目4项,主持或参与其他各级各类课题5项.发表学术论文20余篇,被SCI检索3篇、EI检索10篇.
通讯作者:张倩倩. E-mail: zqq.08312102@163,com.
更新日期/Last Update: 2015-07-15