[1]查刘生,刘紫微.生物分子识别响应性水凝胶及其智能给药系统[J].智能系统学报,2007,2(06):38-47.
 ZHA Liu-sheng,LIU Zi-wei.Biomolecular recognition in responsive hydrogels and their use as intelligent drug delivery systems[J].CAAI Transactions on Intelligent Systems,2007,2(06):38-47.
点击复制

生物分子识别响应性水凝胶及其智能给药系统(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第2卷
期数:
2007年06期
页码:
38-47
栏目:
出版日期:
2007-12-25

文章信息/Info

Title:
Biomolecular recognition in responsive hydrogels and  their use as intelligent drug delivery systems
文章编号:
1673-4785(2007)06-0038-10
作者:
查刘生12刘紫微1
1.东华大学 纤维材料改性国家重点实验室,上海201620;
2.东华大学分析测试中心,上海201620
Author(s):
ZHA Liu-sheng12 LIU Zi-wei1
1.State Key Laboratory for Modification of Chemical Fibers and Polym er Materials,Donghua University, Shanghai 201620, China;
 2.Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China
关键词:
智能水凝胶生物分子识别智能给药系统刺激响应性
Keywords:
intelligent hydrogels biomolecular recognition intelligent drug delivery syste m stimulative response
分类号:
Q811
文献标志码:
A
摘要:
生物分子识别响应性水凝胶是模拟生命活动过程中的分子识别现象,能识别特定生物分子而产生刺激响应性的智能高分子材料.用它构筑的智能系统类似于具有反馈和平衡功能的生物系统,在生物工程和生物医学领域有非常诱人的应用前景.对能识别特定生物分子,如葡萄糖、酶、抗原、核酸等,产生刺激响应的智能水凝胶的制备及其在智能给药系统中的应用研究情况进行了详细介绍.这些内容有助于更好地理解生物分子识别响应性水凝胶的结构和功能,另外也为发展新型智能给药系统提供了很好的思路.
Abstract:
Biomolecule recognition responsive hydrogels are the intelligent polymer materia ls which can recognize specific biomolecules and respond to them mimicking the m oleculerecognizing process of life activity. The intelligent systems fabricate d from the hydrogels resemble the biological systems with feedback and equilibriu m functions, and they have a great deal of potential applications in the fields of bioengineering and biomedicine. In this paper, we give a deta iled overview of current research in the preparation of intelligent hydrogels th at respond to specific molecules, such as glucose, enzymes, antigens, nucleic ac id, etc. The application of these hydrogels in intelligent drug delivery system s is also introduced. Then the paper explains the relationship between the struc tures and functions of biomolecular recognition in responsive hydrogels, giving a good basis for the development of new types of intelligent drug delivery syste ms.

参考文献/References:

[1]NAYAK S, LYON L A. Soft nanotechnology with soft nanoparticles[J] . Angewandte Chemie International Edition, 2005, 44(47):7686-7708. 
[2]PEPPAS N A, HILT J Z, KHADEMHOSSEINI A, et al.Hydrogels in biology and med icine: from molecular principles to bionanotechnology[J]. Advanced Materials, 2006, 18(11):1345-1360.
[3]ALBIN G, HORBETT T A, RATNER B D. Glucose sensitive membranes for controll ed delivery of insulin: insulin transport studies[J]. Journal of Controlled Re lease,1985(2): 153-164. 
[4]CARTIER S, HORBETT T A, RATNER B D. Glucosesensitive membrane coated poro us filters for control of hydraulic permeability and insulin delivery from a press urized reservoir[J]. Journal of Membrane Science, 1995, 106(1-2): 17-24. 
[5]ALBIN G W, HORBETT T A, MILLER S R, et al. Theoretical and experimental st udies of glucose sensitive membranes[J]. Journal of Controlled Release, 1987, 6(1):267-291.
[6]HASSAN C M, DOYLE F J , PEPPAS N A. Dynamic behavior of glucoseresponsive poly(methacrylic acidgethylene glycol) hydrogels[J]. Macrmolecules, 1997, 30(20): 6166-6173. 
[7]PARKER R S, DOYLE F J, PEPPAS N A. A modelbased algorithm for blood gluc ose control in type I diabetic patients[J]. Journal of Biomedical Engineering, 1999, 46:148-157. 
[8]TOMOAKI U, YOSHIHIRO K, JUNJI W, et al.Degradation of phospholipid polymer hydrogel by hydrogen peroxide aiming at insulin release device[J]. Biomateria ls, 2003, 24(28):5183-5190.
[9]PODUAL K, DOYLE F J, PEPPAS N A. Preparation and dynamic response of catio nic copolymer hydrogels containing glucose oxidase[J]. Polymer, 2000, 41(11):3 975-3983.
[10]PODUAL K, DOYLE F J, PEPPAS N A. Glucosesensitivity of glucose oxidase containing cationic copolymer hydrogels having poly(ethylene glycol) grafts[J] . Journal of Controlled Release, 2000, 67(1):9-17.
[11]PODUAL K, DOYLE F J, PEPPAS N A. Dynamic behaviour of glucose oxidasecon taining microparticles of poly(ethylene glycol)grafted cationic hydrogels in a n environment of changing pH[J]. Biomaterials, 2000, 21(14):1439-1450.
[12]PODUAL K, DOYLE F J, PEPPAS N A. Modeling of water transport in and relea se from glucosesensitive swellingcontrolled release systems based on poly(di ethylaminoethyl methacrylategethylene glycol)[J]. Industrial and Engineeri ng Chemistry Research, 2004, 43(23):7500-7512.
[13]KANG S, BAE Y H. A sulfonamide based glucoseresponsive hydrogel with co valently immobilized glucose oxidase and catalase[J]. Journal of Controlled Re lease, 2003, 86(1):115-121.
[14]BROWNLEE M, CERAMI A. A glucosecontrolled insulin delivery system: semis ynthetic insulin bound to lectin[J]. Science, 1979, 206:1190-1191. 
[15]SEMINOFF L A, OLSEN G B, KIM S W. A selfregulating insulin delivery syst em. I. Characterization of a synthetic glycosylated insulin derivative[J]. Int ernational Journal of Pharmaceutics, 1989, 54(3):241-249. 
[16]KIM S W, PAI C M, MAKINO K, et al.Selfregulated glycosylated insulin del ivery[J]. Journal of Controlled Release, 1990,11(1-3):193-201. 
[17]MIYATA T, JIKIHARA A, NAKAMAE K, et al.Preparation of poly(2glucosyloxye thyl methacrylate)–concanavalin A complex hydrogel and its glucosesensitivity [J]. Macromolecular Chemistry and Physics, 1996, 197(3):1135-1146.
[18]NAKAMAE K, MIYATA T, JIKIHARA A, et al.Formation of poly(glucosyloxyethyl methacrylate)concanavalin A complex and its glucosesensitivity[J]. Journa l of Biomaterials Science Polymer Edition, 1994, 6(1):79-90.
[19]MIYATA T, JIKIHARA A, NAKAMAE K, et al.Preparation of reversibly glucose responsive hydrogels by covalent immobilization of lectin in polymer networks ha ving pendant glucose[J]. Journal of Biomaterials Science Polymer Edition, 2004 , 15(9): 1085-1098. 
[20]TANNA S, SAHOTA T S, SAWICKA K, et al.The effect of degree of acrylic der ivatisation on dextran and concanavalin A glucoseresponsive materials for clos edloop insulin delivery[J]. Biomaterials,2006, 27(25):4498-4507.
[21]LEE S J, PARK K. Synthesis and characterization of solgel phasereversi ble hydrogels sensitive to glucose[J]. Journal of Molecular Recognition, 1996, 9(5-6):549-557. 
[22]OBAIDAT A A, PARK K. Characterization of glucose dependent gelsol phase transition of the polymeric glucoseconcanavalin A hydrogel system[J]. Phar maceutical Research, 1996, 13(7):989-995. 
[23]OBAIDAT A A, PARK K. Characterization of protein release through glucose sensitive hydrogel membranes[J]. Biomaterials,1997, 18(11):801-806. 
[24]YOU L C, LU F Z, LI Z C, et al.Glucosesensitive aggregates formed by pol y(ethylene oxide)blockpoly(2glucosyloxyethyl acrylate) with concanavalin A in dilute aqueous medium[J]. Macromolecules, 2003, 36(1):1-4.
[25]KITANO S, KATAOKA K, KOYAMA Y, et al.Glucose-responsive complex formation between poly(vinyl alcohol) and poly(Nvinyl2pyrrolidone) with pendent phe nylboronic acid moieties[J]. Macromolecular Rapid Communications,1991, 12(4): 227-233. 
[26]KITANO S, KOYAMA Y, KATAOKA K, et al.A novel drug delivery system utilizi ng a glucose responsive polymer complex between poly(vinyl alcohol) and poly(Nvi nyl2pyrrolidone) with a phenylboronic acid moiety[J]. Journal of Controlle d Release, 1992, 19(1-3):161-170.
[27]KATAOKA K, MIYAZAKI H, OKANO T, et al.Sensitive glucoseinduced change of the lower critical solution temperature of poly in physiological saline[J]. M acromolecules,19 94, 27(4):1061-1062. 
[28]AOKI T, NAGAO Y, SANUI K, et al.Glucosesensitive lower critical solution temperature changes of copolymers composed of Nisopropylacrylamide and phenyl boronic acid moieties[J].Polymer Journal, 1996, 28(4): 371-374. 
[29]KATAOKA K, MIYAZAKI H, BUNYA M, et al.Totally synthetic polymer gels resp onding to external glucose concentration: their preparation and application to o noff regulation of insulin release[J]. Journal of the American Chemical Soc iety, 1998, 120(48):12694-12695. 
[30]LAPEYRE V, GOSSE I, CHEVREUX S, et al.Monodispersed glucoseresponsive mi crogels operating at physiological salinity[J]. Biomacromolecules, 2006, 7(12) :3356-3363.
[31]DE GEEST B G, JONAS A M, DEMEESTER J, et al.Glucoseresponsive polyelectr olyte capsules[J]. Langmuir, 2006, 22(11): 5070-5074.
[32]HOVGAARD L, NDSTED H. Dextran hydrogels for colonspecific drug delivery [J]. Journal of Controlled Release, 1995, 36(1-2):159-166.
[33]SAFFRAN M, KUMAR G S, SAVARIAR C, et al.A new approach to the oral admini stration of insulin and other peptide drugs[J]. Science, 1986, 233: 1081-1084 .
[34]YEH P Y, KOPECKOVA P, KOPECEK J. Biodegradable and pHsensitive hydrogels : synthesis by crosslinking of N,N dimethylacrylamide copolymer precursors[ J]. Journal of Polymer Science Part A: Polymer Chemistry, 1994, 32(9): 1627-1637. 
[35]YEH P Y, KOPECKOVA P, KOPECEK J. Degradability of hydrogels containing az oaromatic crosslinks[J]. Macromolecular Chemistry and Physics, 1995, 196(7):21 83-2202. 
[36]GHANDEHARI H, KOPECKOVA P, KOPECEK J, et al.Biodegradable and pH sensitiv e hydrogels: synthesis by a polymerpolymer reaction[J]. Macromolecular Chemi stry and Physics, 1996, 197(9): 965-980. 
[37]GHANDEHARI H, KOPECKOVA P, KOPECEK J. In vitro degradation of pHsensitiv e hydrogels containing aromatic azo bonds[J]. Biomaterials, 1997, 18(12):861- 872. 
[38]AKALA E O, KOPECKOVA P, KOPECEK J. Novel pHsensitive hydrogels with adju stable swelling kinetics[J]. Biomaterials, 1998, 19(11-12):1037-1047. 
[39]KURISAWA M, TERANO M, YUI N. Doublestimuliresponsive degradation of hy drogels consisting of oligopeptideterminated poly(ethylene glycol) and dextran with an interpenetrating polymer network[J]. Journal of Biomaterials Science: polymer Edition, 1997, 8(9): 691-708.
[40]YAMAMOTO N, KURISAWA M, YUI N. Doublestimuliresponsive degradable hydr ogels: interpenetrating polymer networks consisting of gelatin and dextran with different phase separation[J]. Macromolecular Rapid Communications, 1996, 17(5 ):313-318. 
[41]KURISAWA M, YUI N. Dualstimuliresponsive drug release from interpenetr ating polymer networkstructured hydrogels of gelatin and dextran[J]. Journal of Controlled Release, 1998, 54(2):191-200. 
[42]MIYATA T, ASAMI N, URAGAMI T. Preparation of an antigensensitive hydroge l using antigenantibody bindings[J]. Macromolecules,1999, 32(6):2082-2084. 
[43]MIYATA T, ASAMI N, URAGAMI T. A reversibly antigenresponsive hydrogel[J ]. Nature, 1999, 399: 766-769. 
[44]NATSUME T, KOIDE T, YOKOTA S K,et al.Interactions between collagenbindin g stress protein HSP47 and collagen: analysis of kinetic parameters by surface plasmon resonance biosensor[J]. Journal of Biological Chemistry, 1994, 269(49) :31224-31228.
[45]MURAI N, TAGUCHI H, YOSHIDA M. Kinetic analysis of interactions betw een G roEL and reduced alactalbumin: effect of GroES and nucleotides[J]. Journal o f Biological Chemistry, 1995, 270(34):19957-19963. 
[46]LU Z R, KOPECKOVA P, KOPECEK J. Antigen responsive hydrogels ba sed on pol ymerizable antibody Fab’fragment[J]. Macromolecular Bioscience, 2003, 3 (6): 296-300.
[47]SOFIYA K, RON K, MARINA K, et al.Rapid colorimetric detection of antibody epitope recognition at a biomimetic membrane interface[J]. Journal of the Am erican Chemical Society, 2001, 123(3):417-422.
[48]LINDEN H, HERBER S, OLTHUIS W, et al.Stimulussensitive hydrogels and the ir applications in chemical (micro)analysis[J], Analyst, 2003, 128(4):325-331 .
[49]AOKI T, NAKAMURA K, SANUI K, et al.Adenosineinduced changes of the phase transition of Poly(6(acryloyloxymethyl)uracil) aqueous solution[J]. Polymer Journal, 1999, 31(11):1185-1188. 
[50]MURAKAMI Y, MAEDA M. Hybrid hydrogels to which singlestranded(ss) DNA pr obe is incorporated can recognize specific ssDNA[J]. Macromolecules, 2005, 38( 5):1535-1537.
[51]MURAKAMI Y, MAEDA M. DNA-responsive hydrogels that can shrink or swell[J ]. Biomacromolecules, 2005, 6(6): 2927-2929.

备注/Memo

备注/Memo:
收稿日期:2007-03-02.
基金项目:国家自然科学基金资助项目(50573009)
作者简介:
查刘生,男,1964年生,教授,博士生导师,主要研究方向为智能高分子材料及其智能系统.主持过国家科委地方重大科技攻关项目和国家自然科学基金面上项目,有4项成果通过省级鉴定,处于国内或国际领先水平,1项成果获省部级科技进步三等奖,申报国家发明专利1项,完成横向开发项目14项,发表论文50多篇,其中20多篇被 SCI收录. E-mail:lszha@dhu.edu.cn.
刘紫微,女,1981年生,硕士研究生,主要研究方向为生物分子识别响应性水凝胶. E-mail:ziweiliu@mail.dhu.edu.cn.
更新日期/Last Update: 2009-05-08