[1]伍锡如,沈可扬.基于人工势场的防疫机器人改进近端策略优化算法[J].智能系统学报,2025,20(3):689-698.[doi:10.11992/tis.202407026]
 WU Xiru,SHEN Keyang.Improved proximal policy optimization algorithm for epidemic prevention robots based on artificial potential fields[J].CAAI Transactions on Intelligent Systems,2025,20(3):689-698.[doi:10.11992/tis.202407026]
点击复制

基于人工势场的防疫机器人改进近端策略优化算法

参考文献/References:
[1] 张帆, 谭跃刚. 生成式预训练模型机器人及其潜力与挑战[J]. 中国机械工程, 2024, 35(7): 1241-1252.
ZHANG Fan, TAN Yuegang. Generative pre-trained model robot: potential and challenges[J]. China mechanical engineering, 2024, 35(7): 1241-1252.
[2] 鞠庆, 刘飞飞, 李光昌, 等. 室内环境自主消毒防疫机器人系统设计[J]. 传感器与微系统, 2023, 42(12): 103-106.
JU Qing, LIU Feifei, LI Guangchang, et al. Design of autonomous disinfection and prevention robot system for indoor environment[J]. Sensors and microsystems, 2023, 42(12): 103-106.
[3] JULIAN R E, BERNARDINO C T, STEFANO D G, et al. An algorithm for dynamic obstacle avoidance applied to UAVs[J]. Robotics and autonomous systems, 2025, 186: 104907.
[4] 黄郑, 谢彧颖, 张欣, 等. 基于运动预测与改进APF的无人机路径规划方法[J]. 电子测量技术, 2023, 46(24): 103-111.
HUANG Zhen, XIE Yuying, ZHANG Xin, et al. UAV path planning method based on motion prediction and improved APF[J]. Electronic measurement technology, 2023, 46(24): 103-111.
[5] 鲜斌, 宋宁. 基于模型预测控制与改进人工势场法的多无人机路径规划[J]. 控制与决策, 2024, 39(7): 2133-2141.
XIAN Bin, SONG Ning. Path planning of multi-UAV based on model predictive control and improved artificial potential field method[J]. Control and decision, 2024, 39(7): 2133-2141.
[6] 邓冬冬, 许建民, 孟寒, 等. 基于蚁群算法与人工势场法融合的移动机器人路径规划[J]. 仪器仪表学报, 2025, 3(1): 1-16.
DENG Dongdong, XU Jianmin, MENG Han, et al. Path planning of mobile robot based on fusion of ant colony algorithm and artificial potential field method[J]. Chinese journal of scientific instrument, 2025, 3(1): 1-16.
[7] 孙传禹, 张雷, 辛山, 等. 结合APF和改进DDQN的动态环境机器人路径规划方法[J]. 小型微型计算机系统, 2023, 44(9): 1940-1946.
SUN Chuanyu, ZHANG Lei, XIN shan, et al. Combining APF and improved DDQN for robot path planning in dynamic environments[J]. Journal of Chinese computer systems, 2023, 44(9): 1940-1946.
[8] 张扬, 彭鹏菲, 曹杰. 基于改进APF算法的水面无人艇局部路径规划[J]. 兵器装备工程学报, 2023, 44(9): 42-48.
ZHANG Yang, PENG Pengfei, CAO Jie. Local path planning for surface unmanned craft based on improved APF algorithm[J]. Journal of ordnance equipment engineering, 2023, 44(9): 42-48.
[9] YANG Chaopeng, PAN Jiacai, WEI Kai, et al. A novel unmanned surface vehicle path-planning algorithm based on A* and artificial potential field in ocean currents[J]. Journal of marine science and engineering, 2024, 12(2): 285-310.
[10] YU Jiabin, WU Jiguang, XU Jiping, et al. A novel planning and tracking approach for mobile robotic arm in obstacle environment[J]. Machines, 2023, 12(1): 19-35.
[11] 朱少凯, 孟庆浩, 金晟, 等. 基于深度强化学习的室内视觉局部路径规划[J]. 智能系统学报, 2022, 17(5): 908-918.
ZHU Shaokai, MENG Qinghao, JIN Sheng, et al. Indoor visual local path planning based on deep reinforcement learning[J]. CAAI transactions on intelligent systems, 2022, 17(5): 908-918.
[12] 赵玉新, 杜登辉, 成小会, 等. 基于强化学习的海洋移动观测网络观测路径规划方法[J]. 智能系统学报, 2022, 17(1): 192-200.
ZHAO Yuxin, DU Denghui, CHENG Xiaohui, et al. Reinforcement learning based observation path planning method for marine mobile observation networks[J]. CAAI transactions on intelligent systems, 2022, 17(1): 192-200.
[13] SUN Aijing, SUN Chi, DU Jianbo, et al. Optimizing energy efficiency in UAV-Assisted wireless sensor networks with reinforcement learning PPO2 algorithm[J]. IEEE sensors journal, 2023, 23(23): 29705-29721.
[14] CAI Peide, WANG Heng, HUANG Huaiyang, et al. Vision-based autonomous car racing using deep imitative reinforcement learning[J]. IEEE robot, 2021, 6(4): 7262-7269.
[15] GU Zhixin, JIA Keyi, XU Kaihong. Three-dimensional path planning method of agent based on fluid disturbance algorithm and PPO[J]. IAENG international journal of computer science, 2025, 52(2): 365-373.
[16] ZHU Zeyu, ZHAO Huijing. A survey of deep RL and IL for autonomous driving policy learning[J]. IEEE transactions on intelligent transportation systems, 2022, 23(9): 14043-14065.
[17] 沈骁, 赵彤洲. 基于DDQN的无人机区域覆盖路径规划策略[J]. 电子测量技术, 2023, 46(14): 30-36.
SHEN Xiao, ZHAO Tongzhou. DDQN-based path planning strategy for UAV area coverage[J]. Electronic measurement technology, 2023, 46(14): 30-36.
[18] XING Bowen, WANG Xiao, LIU Zhenchong. The wide-area coverage path planning strategy for deep-sea mining vehicle cluster based on deep reinforcement learning[J]. Journal of marine science and engineering, 2024, 12(2): 316-332.
[19] GUAN Yang, REN Yangang, SUN Qi, et al. Centralized cooperation for connected and automated vehicles at intersections by proximal policy optimization[J]. 2020, IEEE transactions on vehicular technology, 69(11), 12597–12608.
[20] GUO Hongda, XU Youchun, MA Yulin, et al. Pursuit path planning for multiple unmanned ground vehicles based on deep reinforcement learning[J]. Electronics, 2023, 12(23): 4759-4778.
[21] HUANG Xiangxiang, WANG Wei, JI Zhaokang, et al. Representation enhancement-based proximal policy optimization for UAV path planning and obstacle avoidance[J]. International journal of aerospace engineering, 2023, 2023: 1-15.
[22] GUAN Wei, CUI Zhewen, ZHANG Xianku. Intelligent smart marine autonomous surface ship decision system based on improved PPO algorithm[J]. Sensors, 2022, 22(15): 5732-5765.
[23] LIU Jinyuan FU Minglei, LIU Andong, et al. A homotopy invariant based on convex dissection topology and a distance optimal path planning algorithm[J]. IEEE robotics and automation letters, 2023, 8(11): 7695-7702.
[24] 邓修朋, 崔建明, 李敏, 等. 深度强化学习在机器人路径规划中的应用[J]. 电子测量技术, 2023, 46(6): 1-8.
DENG Xiuming, CUI Jianming, LI Min, et al. Deep reinforcement learning in robot path planning[J]. Electronic measurement technology, 2023, 46(6): 1-8.
[25] WU Haixiao, ZHANG Yong, HUANG Linxiong, et al. Research on vehicle obstacle avoidance path planning based on APF-PSO[J]. Proceedings of the institution of mechanical engineers, 2023, 237(6): 1391-1405.
[26] YAN Xun, JIANG Dapeng, MIAO Runlong, et al. Formation control and obstacle avoidance algorithm of a multi-USV system based on virtual structure and artificial potential field[J]. Journal of marine science and engineering, 2021, 9(2): 1-17.
[27] XU Haotian, YAN Zheng, XUAN Junyu, et al. Improving proximal policy optimization with alpha divergence[J]. Neuro computing, 2023, 534(C): 94-105.
[28] QIN Yunhui, ZHANG Zhongshan, LI Xulong, et al. Deep reinforcement learning based resource allocation and trajectory planning in integrated sensing and communications UAV network[J]. IEEE transactions on wireless communications, 2023, 22(11): 8158-8169.
[29] AN Haonan, WANG Lin. Robust topology generation of internet of things based on PPO algorithm using discrete action space[J]. IEEE transactions on industrial informatics., 2023, 20(4): 5406-5414.
[30] XU Yahao, WEI Yiran, WANG Di, et al. Multi-UAV path planning in GPS and communication denial environment[J]. Sensors (Basel, Switzerland), 2023, 23(6): 2997-3012.
相似文献/References:
[1]黄彦文,曹其新.RoboCup比赛环境下足球机器人路径规划研究[J].智能系统学报,2007,2(4):52.
 HUANG Yan-wen,CAO Qin-xin.Path planning for robot soccer in the RoboCup environment[J].CAAI Transactions on Intelligent Systems,2007,2():52.
[2]黄维,田彦涛,樊泽华,等.自主车辆安全系数估计与T形路口避碰规划[J].智能系统学报,2013,8(5):408.[doi:10.3969/j.issn.1673-4785.201301021]
 HUANG Wei,TIAN Yantao,FAN Zehua,et al.Estimation of the safety coefficient of autonomous vehicles and collision avoidance planning at the T-shape intersection[J].CAAI Transactions on Intelligent Systems,2013,8():408.[doi:10.3969/j.issn.1673-4785.201301021]
[3]贺超,刘华平,孙富春,等.采用Kinect的移动机器人目标跟踪与避障[J].智能系统学报,2013,8(5):426.[doi:10.3969/j.issn.1673-4785.201301028]
 HE Chao,LIU Huaping,SUN Fuchun,et al.Target tracking and obstacle avoidance of mobile robot using Kinect[J].CAAI Transactions on Intelligent Systems,2013,8():426.[doi:10.3969/j.issn.1673-4785.201301028]
[4]王奎民,赵玉飞,侯恕萍,等.一种改进人工势场的UUV动碍航物规避方法[J].智能系统学报,2014,9(1):47.[doi:10.3969/j.issn.1673-4785.201309038]
 WANG Kuimin,ZHAO Yufei,HOU Shuping,et al.Dynamic obstacle avoidance for unmanned underwater vehiclebased on an improved artificial potential field[J].CAAI Transactions on Intelligent Systems,2014,9():47.[doi:10.3969/j.issn.1673-4785.201309038]
[5]王文彬,秦小林,张力戈,等.基于滚动时域的无人机动态航迹规划[J].智能系统学报,2018,13(4):524.[doi:10.11992/tis.201708031]
 WANG Wenbin,QIN Xiaolin,ZHANG Lige,et al.Dynamic UAV trajectory planning based on receding horizon[J].CAAI Transactions on Intelligent Systems,2018,13():524.[doi:10.11992/tis.201708031]

备注/Memo

收稿日期:2024-7-24。
基金项目:国家自然科学基金项目(62263005);广西自然科学基金重点项目(2020GXNSFDA238029);广西高校人工智能与信息处理重点实验室开放基金重点项目(2022GXZDSY004);桂林电子科技大学研究生教育创新计划项目(2024YCXS119,2024YCXS131).
作者简介:伍锡如,教授,博士生导师,主要研究方向为深度学习、复杂网络、路径规划。主持国家自然科学基金项目1项、广西壮族自治区自然科学基金项目1项、广西高校人工智能与信息处理重点实验室开放基金重点项目1项。获发明专利授权6项,发表学术论文50余篇,出版专著1部。E-mail:xiruwu520@163.com。;沈可扬,硕士研究生,主要研究方向为路径规划。E-mail:1341391239@qq.com。
通讯作者:伍锡如. E-mail:xiruwu520@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com