[1]钟义信.人工智能范式的革命与通用智能理论的创生[J].智能系统学报,2021,16(4):792-800.[doi:10.11992/tis.202103042]
 ZHONG Yixin.Paradigm revolution in artificial intelligence and the birth of general theory of intelligence[J].CAAI Transactions on Intelligent Systems,2021,16(4):792-800.[doi:10.11992/tis.202103042]
点击复制

人工智能范式的革命与通用智能理论的创生(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第16卷
期数:
2021年4期
页码:
792-800
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2021-07-05

文章信息/Info

Title:
Paradigm revolution in artificial intelligence and the birth of general theory of intelligence
作者:
钟义信
北京邮电大学 人工智能学院,北京 100876
Author(s):
ZHONG Yixin
AI School, Beijing University of Posts and Telecommunications, Beijing 100876, China
关键词:
人类智能人工智能范式革命智能生成机理通用智能理论
Keywords:
human intelligenceartificial intelligenceparadigm revolutionmechanism for intelligence growthgeneral theory of intelligence
分类号:
TP18
DOI:
10.11992/tis.202103042
摘要:
人工智能的研究取得了不少可喜的进展,也面临着许多严峻的挑战。为了应对这些挑战,学术界提出了各种各样的研究思路。笔者相信,每种思路都有其合理之处,都有可能获得一定的成效。不过,根据笔者的理解,人工智能面临的最深刻最严峻的挑战,是学科和时代的大转变所带来的大阵痛:人工智能范式的张冠李戴。因此,必须对人工智能的范式实施“正冠”:颠覆传统学科范式对人工智能研究的束缚,确立信息学科范式对人工智能研究的规范和引领。实施人工智能范式革命的结果,创生了本文要介绍的“通用智能理论”。
Abstract:
There have been some progresses achieved in AI so far and yet there have also many grand challenges ahead. In response to the challenges, many ideas for AI research have been proposed. All the ideas are believed to have certain reasons and thus to be able to make some results. On the other hand, however, the author of the paper considers that the most serious challenge faced in AI research is the misemployment of paradigm in AI, the throes caused by the great transition of academic system and the social era. As the result, the only solution for this should be the paradigm revolution – to replace the paradigm misemployed in AI, which is the one from physical discipline, by the paradigm for information discipline. Through the paradigm revolution, the General Theory of Intelligence can then be created and built up as will be seen in the paper.

参考文献/References:

[1] 钟义信. 人工智能: 概念·方法·机遇[J]. 科学通报, 2017, 62(22): 2473-2479
ZHONG Yixin. Artificial intelligence: concept, approach and opportunity[J]. Chinese science bulletin, 2017, 62(22): 2473-2479
[2] 钟义信. 科学拟人律[M]//钟义信. 信息的科学. 北京: 光明日报出版社, 1988: 302-311.
[3] 钟义信. 信息化理论基础: 科学-技术-经济-社会互动说[M]. 北京: 北京邮电大学出版社, 2014.
[4] MCCARTHY J, MINSKY M L, ROCHESTER N, et al. Proposal for the Dartmouth summer research project on artificial intelligence[R]. Dartmouth College, 1955.
[5] NEWELL A. Physical symbol systems[J]. Cognitive science, 1980, 4(2): 135-183.
[6] TURING A M. Can machine think?[M]//FEIGENBAUM E A, FELDMAN J. Computers and Thought. New York: McGraw-Hill, 1963.
[7] NEWELL A, SIMON H A. GPS, a program that simulates human thought[M]//FEIGENBAUM E, FELDMAN F. Computers and Thought. New York: McGraw-Hill, 1963: 279-293.
[8] FELGENBAUM E A. The art of artificial intelligence: themes and case studies of knowledge engineering[C]//Proceedings of the 5th International Joint Conference on Artificial Intelligence. Cambridge, MA, USA, 1977: 1014-1029.
[9] NILSSON N J. Principles of artificial intelligence[M]. Berlin: Springer, 1982.
[10] MINSKY M. The society of mind[M]. New York: Simon and Schuster, 1986.
[11] MCCULLOCH W C, PITTS W H. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of mathematical biophysics, 1943, 5: 115-133.
[12] ROSENBLATT F. The perceptron: a probabilistic model for information storage and organization in the Brain[J]. Psychological review, 1958, 65(6): 386-408.
[13] HOPFIELD J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the national academy of sciences of the United States of America, 1982, 79(8): 2554-2558.
[14] KOHONEN T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1464-1480.
[15] RUMELHART D E, MCCLELLAND J L. Parallel distributed processing[M]. Cambridge: MIT Press, 1986.
[16] ZURADA J M. Introduction to artificial neural systems[M]. New York: West Publishing Company, 1992.
[17] BROOKS R A. Intelligence without representation[J]. Artificial intelligence, 1991, 47(1/3): 139-159.
[18] BROOKS R A. Elephant cannot play chess[J]. Autonomous Robert, 1990, 6: 3015.
[19] BROOKS R A. Engineering approach to building complete, intelligent beings[C]//Proceedings of SPIE 1002, Intelligent Robots and Computer Vision VII. Boston, MA, USA, 1989: 618-625.
[20] MINSKY M L, PAPERT S. Perceptron[M]. Cambridge: MIT Press, 1969.
[21] PAPERT S. One AI or many?[J]. Daedalus, 1988, 117(1): 1-14.
[22] RUSSELL S J, NORVIG P. Artificial intelligence: a modern approach[M]. Pearson, 1995.
[23] NILSSON N J. Artificial intelligence: a new synthesis[M]. San Francisco: Morgan Kaufmann, 1998.
[24] 钟义信. 机器知行学原理: 信息、知识、智能的转换与统一理论[M]. 北京: 科学出版社, 2007.
[25] 钟义信. “范式变革”引领与“信息转换”担纲: 机制主义通用人工智能的理论精髓[J]. 智能系统学报, 2020, 15(3): 615-622
ZHONG Yixin. Leading of paradigm shift and undertaking of information conversion: theoretical essence of mechanism-based general AI[J]. CAAI transactions on intelligent systems, 2020, 15(3): 615-622
[26] 钟义信. 机制主义人工智能理论[M]. 北京: 北京邮电大学出版社, 2021.
[27] 钟义信. 机制主义人工智能理论——一种通用的人工智能理论[J]. 智能系统学报, 2018, 13(1): 2-18
ZHONG Yixin. Mechanism-based artificial intelligence theory: a universal theory of artifical intelligence[J]. CAAI transactions on intelligent systems, 2018, 13(1): 2-18
[28] 钟义信. 信息的综合测度[M]//钟义信. 信息的科学. 北京: 光明日报出版社, 1988: 191-203.
[29] 钟义信. 信息科学原理[M]. 北京: 福建人民出版社, 1988.
[30] 钟义信. 高等人工智能原理: 观念·方法·模型·理论[M]. 北京: 科学出版社, 2014.
[31] 钟义信. 从“机械还原方法论”到“信息生态方法论”——人工智能理论源头创新的成功路[J]. 哲学分析, 2017, 8(5): 133-144
ZHONG Yixin. From mechanical reductionism to methodology of information ecology: successful approach to innovation for AI theory[J]. Philosophical analysis, 2017, 8(5): 133-144
[32] 钟义信. 高等智能·机制主义·信息转换[J]. 北京邮电大学学报, 2010, 33(1): 1-6
ZHONG Yixin. Advanced intelligence-mechanism approach-information conversion[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(1): 1-6
[33] ZHONG Yixin. Structuralism? Functionalism? Behaviorism? or mechanism? Looking for a better approach to AI[J]. International journal of intelligent computing and cybernetics, 2008, 1(3): 325-336.
[34] 钟义信. 信息转换原理: 信息、知识、智能的一体化理论[J]. 科学通报, 2013, 58(14): 1300-1306
ZHONG Yixin. Information conversion: a theory for information-knowledge-intelligence conversion[J]. Chinese science bulletin, 2013, 58(14): 1300-1306
[35] ZHONG Yixin. The law of information conversion and intelligence creation[C]//Proceedings of the 2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing. Beijing, China, 2015: 25-41.
[36] 何华灿. 泛逻辑与柔性神经元[M]. 北京: 北京邮电大学出版社, 2021.
[37] 汪培庄. 因素空间理论[M]. 北京: 北京邮电大学出版社, 2021.
[38] ZHONG Yixin. A theory of semantic information[J]. China communications, 2017, 14(1): 1-17.
[39] 钟义信. “理解”论: 信息内容认知机理的假说[J]. 北京邮电大学学报, 2008, 31(3): 1-8
ZHONG Yixin. A hypothetic theory of information content understanding[J]. Journal of Beijing University of Posts and Telecommunications, 2008, 31(3): 1-8
[40] 钟义信. 智能是怎样生成的[J]. 中兴通讯技术, 2019, 25(2): 47-51
ZHONG Yixin. How is intelligence created[J]. ZTE technology journal, 2019, 25(2): 47-51

相似文献/References:

[1]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,4(01):1.
 LI De-yi.AI research and development in the network age[J].CAAI Transactions on Intelligent Systems,2009,4(4):1.
[2]赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报,2008,3(06):476.
 ZHAO Ke-qin.The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J].CAAI Transactions on Intelligent Systems,2008,3(4):476.
[3]徐玉如,庞永杰,甘 永,等.智能水下机器人技术展望[J].智能系统学报,2006,1(01):9.
 XU Yu-ru,PANG Yong-jie,GAN Yong,et al.AUV—state-of-the-art and prospect[J].CAAI Transactions on Intelligent Systems,2006,1(4):9.
[4]王志良.人工心理与人工情感[J].智能系统学报,2006,1(01):38.
 WANG Zhi-liang.Artificial psychology and artificial emotion[J].CAAI Transactions on Intelligent Systems,2006,1(4):38.
[5]赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报,2006,1(02):16.
 ZHAO Ke-qin.The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J].CAAI Transactions on Intelligent Systems,2006,1(4):16.
[6]秦裕林,朱新民,朱 丹.Herbert Simon在最后几年里的两个研究方向[J].智能系统学报,2006,1(02):11.
 QIN Yu-lin,ZHU Xin-min,ZHU Dan.Herbert Simons two research directions in his lost years[J].CAAI Transactions on Intelligent Systems,2006,1(4):11.
[7]谷文祥,李 丽,李丹丹.规划识别的研究及其应用[J].智能系统学报,2007,2(01):1.
 GU Wen-xiang,LI Li,LI Dan-dan.Research and application of plan recognition[J].CAAI Transactions on Intelligent Systems,2007,2(4):1.
[8]杨春燕,蔡 文.可拓信息-知识-智能形式化体系研究[J].智能系统学报,2007,2(03):8.
 YANG Chun-yan,CAI Wen.A formalized system of extension information-knowledge-intelligence[J].CAAI Transactions on Intelligent Systems,2007,2(4):8.
[9]赵克勤.SPA的同异反系统理论在人工智能研究中的应用[J].智能系统学报,2007,2(05):20.
 ZHAO Ke-qin.The application of SPAbased identicaldiscrepancycontrary system theory in artificial intelligence research[J].CAAI Transactions on Intelligent Systems,2007,2(4):20.
[10]王志良,杨 溢,杨 扬,等.一种周期时变马尔可夫室内位置预测模型[J].智能系统学报,2009,4(06):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]
 WANG Zhi-liang,YANG Yi,YANG Yang,et al.A periodic time-varying Markov model for indoor location prediction[J].CAAI Transactions on Intelligent Systems,2009,4(4):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]

备注/Memo

备注/Memo:
收稿日期:2021-03-30。
基金项目:国家自然科学基金项目(18ZDA027,60873001,60575034)
作者简介:钟义信,北京邮电大学教授,博士生导师,发展中世界工程技术科学院院士,中国人工智能学会原理事长,现任国际信息研究学会中国分会主席,北京邮电大学-格分维人工智能联合实验室学术委员会主任,主要研究方向为信息论、信息科学、人工智能。主持国家级和省部级项目数十项。先后提出和建立“全信息理论”“全信息自然语言理解理论”“机制主义人工智能统一理论”以及“机器知行学”理论,发现和总结了“信息转换与智能创生定律”,先后获得“有突出贡献的归国留学人员”“全国优秀教师”等称号;获得首届吴文俊人工智能科学技术成就奖和首届中国电子学会信息理论杰出贡献奖。出版学术专著18部,发表学术论文500余篇
通讯作者:钟义信.E-mail:zyx@bupt.edu.cn
更新日期/Last Update: 1900-01-01