[1]崔铁军,李莎莎.人工智能系统故障分析原理研究[J].智能系统学报,2021,16(4):785-791.[doi:10.11992/tis.202003046]
 CUI Tiejun,LI Shasha.Research on system fault analysis principle based on artificial intelligence system[J].CAAI Transactions on Intelligent Systems,2021,16(4):785-791.[doi:10.11992/tis.202003046]
点击复制

人工智能系统故障分析原理研究(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第16卷
期数:
2021年4期
页码:
785-791
栏目:
学术论文—人工智能基础
出版日期:
2021-07-05

文章信息/Info

Title:
Research on system fault analysis principle based on artificial intelligence system
作者:
崔铁军1 李莎莎2
1. 辽宁工程技术大学 安全科学与工程学院,辽宁 葫芦岛 125105;
2. 辽宁工程技术大学 工商管理学院,辽宁 葫芦岛 125105
Author(s):
CUI Tiejun1 LI Shasha2
1. College of Safety Science and Engineering, Liaoning Technical University, Huludao 125105, China;
2. School of business administration, Liaoning Technical University, Huludao 125105, China
关键词:
安全系统工程空间故障树智能科学系统故障分析原理信息生态方法论系统运动空间系统映射论
Keywords:
safety system engineeringspace fault treeintelligent sciencesystem faultanalysis principleinformation ecology methodologysystem movement spacesystem mapping
分类号:
TP391;X913;C931.1
DOI:
10.11992/tis.202003046
摘要:
为研究未来系统在人工智能控制下的系统故障预测、预防、控制和恢复能力,提出一种基于信息生态方法论的人工智能系统故障分析方法。将研究对象划分为人、功能、自然和智能系统;以智能系统为核心,研究故障信息、知识和智能安全生成原理;论述了基础故障意识、情感和理智的特点。研究表明,系统故障的人工智能分析必须采用信息生态方法论结合安全科学理论进行。分析原理是基于信息生态方法论,考虑基础故障意识、情感与理智,及即时故障语义信息进行的综合决策与反应,以确保系统在规定条件下完成预定功能。
Abstract:
To study the ability of system fault prediction, prevention, control, and recovery under the control of artificial intelligence, an artificial intelligence system fault analysis method based on information ecology methodology is proposed. The research object is divided into human beings, function, nature, and intelligent system. Taking the intelligent system as the core, the fault information, knowledge, and intelligent safety generation principle are studied. In addition, the characteristics of basic fault consciousness, emotion, and reason are discussed. Results show that the artificial intelligence system fault analysis method must adopt the information ecology methodology in combination with safety science theory. The analysis principle is based on the information ecology methodology, considering the comprehensive decision and response of basic fault consciousness, emotion and reason, and real-time fault semantic information, to ensure that the system can complete the predetermined function under the specified conditions.

参考文献/References:

[1] CUI Tiejun, LI Shasha. Deep learning of system reliability under multi-factor influence based on space fault tree[J]. Neural computing and applications, 2019, 31(9): 4761-4776.
[2] 崔铁军, 马云东. 多维空间故障树构建及应用研究[J]. 中国安全科学学报, 2013, 23(4): 32-37
CUI Tiejun, MA Yundong. Research on multi-dimensional space fault tree construction and application[J]. China safety science journal, 2013, 23(4): 32-37
[3] 张豫龙, 王建峰, 李陶然, 等. 基于观测图像识别的天文望远镜智能故障辅助诊断系统[J]. 天文研究与技术, 2020, 17(3): 392-398
ZHANG Yulong, WANG Jianfeng, LI Taoran, et al. The intelligent fault auxiliary diagnosis system of astronomical telescope based on observation image recognition[J]. Astronomical research & technology, 2020, 17(3): 392-398
[4] 贾惠彬, 盖永贺, 李保罡, 等. 基于强化学习的电力通信网故障恢复方法[J]. 中国电力, 2020, 53(6): 34-40
JIA Huibin, GAI Yonghe, LI Baogang, et al. Power communication network recovery from large-scale failures based on reinforcement learning[J]. Electric power, 2020, 53(6): 34-40
[5] 尹相国, 张文, 路致远, 等. 面向智能变电站二次设备的故障诊断方法研究[J]. 电测与仪表, 2020, 57(3): 39-45
YIN Xiangguo, ZHANG Wen, LU Zhiyuan, et al. Research on fault diagnosis method for secondary equipment of intelligent substation[J]. Electrical measurement & instrumentation, 2020, 57(3): 39-45
[6] 高凯, 宋娜, 王红艳, 等. 基于大数据的地铁车辆智能故障监测系统研究[J]. 铁道机车车辆, 2019, 39(S1): 35-39
GAO Kai, SONG Na, WANG Hongyan, et al. Research on intelligent fault monitoring system for metro vehicles based on big data[J]. Railway locomotive & car, 2019, 39(S1): 35-39
[7] 张龙, 吴荣真, 雷兵, 等. 基于多尺度熵的滚动轴承故障可拓智能识别[J]. 噪声与振动控制, 2019, 39(6): 200-205
ZHANG Long, WU Rongzhen, LEI Bing, et al. Extensible intelligent identification for rolling bearing faults using multiscale entropy[J]. Noise and vibration control, 2019, 39(6): 200-205
[8] 徐红辉, 王翀, 范杰. 基于故障状态演化的高速公路机电设备智能维护系统设计[J]. 现代电子技术, 2019, 42(24): 112-115
XU Honghui, WANG Chong, FAN Jie. Design of fault state evolution based intelligent maintenance system for electromechanical equipments on expressway[J]. Modern electronics technique, 2019, 42(24): 112-115
[9] 崔铁军, 李莎莎. 安全科学中的故障信息转换定律[J]. 智能系统学报, 2020, 15(2): 360-366
CUI Tiejun, LI Shasha. The conversion law of fault information in Safety Science[J]. CAAI transactions on intelligent systems, 2020, 15(2): 360-366
[10] 范士雄, 李立新, 王松岩, 等. 人工智能技术在电网调控中的应用研究[J]. 电网技术, 2020, 44(2): 401-411
FAN Shixiong, LI Lixin, WANG Songyan, et al. Application analysis and exploration of artificial intelligence technology in power grid dispatch and control[J]. Power system technology, 2020, 44(2): 401-411
[11] 盛海华, 王德林, 马伟, 等. 基于大数据的继电保护智能运行管控体系探索[J]. 电力系统保护与控制, 2019, 47(22): 168-175
SHENG Haihua, WANG Delin, MA Wei, et al. Exploration of intelligent operation management system of relay protection based on big data[J]. Power system protection and control, 2019, 47(22): 168-175
[12] 王春影. 低温环境下汽车发动机运行故障智能诊断仿真[J]. 计算机仿真, 2018, 35(12): 131-134
WANG Chunying. Intelligent diagnosis of automobile engine running fault in low temperature environment[J]. Computer simulation, 2018, 35(12): 131-134
[13] BUKKAPATNAM S T S, AFRIN K, DAVE D, et al. Machine learning and AI for long-term fault prognosis in complex manufacturing systems[J]. CIRP annals, 2019, 68(1): 459-462.
[14] WANG Shiqiang, XING Jianchun, JIANG Ziyan, et al. A novel sensors fault detection and self-correction method for HVAC systems using decentralized swarm intelligence algorithm[J]. International journal of refrigeration, 2019, 106: 54-65.
[15] NASIRI A, TAHERI-GARAVAND A, OMID M, et al. Intelligent fault diagnosis of cooling radiator based on deep learning analysis of infrared thermal images[J]. Applied thermal engineering, 2019, 163(1): 114410.
[16] KUNCAN M, KAPLAN K, MINAZ M R, et al. A novel feature extraction method for bearing fault classification with one dimensional ternary patterns[J]. ISA transactions, 2020, 100: 346-357.
[17] BENSAOUCHA S, BESSEDIK S A, AMEUR A, et al. Induction motors broken rotor bars detection using RPVM and neural network[J]. Compel, 2019, 38(2): 596-615.
[18] ZANG Yu, SHANGGUAN Wei, CAI Baigen, et al. Methods for fault diagnosis of high-speed railways: a review[J]. Proceedings of the institution of mechanical engineers, part O: journal of risk and reliability, 2019, 233(5): 908-922.
[19] NOURELDEEN O, HAMDAN I, HASSANIN B. Design of advanced artificial intelligence protection technique based on low voltage ride-through grid code for large-scale wind farm generators: a case study in Egypt[J]. SN applied sciences, 2019, 1(6): 515.
[20] LIU Xiaolian, TIAN Yu, LEI Xiaohui, et al. Deep forest based intelligent fault diagnosis of hydraulic turbine[J]. Journal of mechanical science and technology, 2019, 33(5): 2049-2058.
[21] 钟义信. 信息生态学与语义信息论[J]. 图书情报知识, 2017(6): 4-11
ZHONG Yixin. Information ecology and semantic information theory[J]. Documentation, information & knowledge, 2017(6): 4-11
[22] 钟义信. 从“机械还原方法论”到“信息生态方法论”——人工智能理论源头创新的成功路[J]. 哲学分析, 2017, 8(5): 133-144
ZHONG Yixin. From mechanical reductionism to methodology of information ecology: successful approach to innovation for AI theory[J]. Philosophical analysis, 2017, 8(5): 133-144
[23] 钟义信. 从信息科学视角看《信息哲学》[J]. 哲学分析, 2015, 6(1): 17-31
ZHONG Yixin. Information science and its view on information philosophy[J]. Philosophical analysis, 2015, 6(1): 17-31
[24] 钟义信. 高等智能·机制主义·信息转换[J]. 北京邮电大学学报, 2010, 33(1): 1-6
ZHONG Yixin. Advanced intelligence-mechanism approach-information conversion[J]. Journal of Beijing University of Posts and Telecommunications, 2010, 33(1): 1-6
[25] LEVESON N G. Engineering A Safer World: Systems Thinking Applied to Safety[M]. Cambridge: MIT Press, 2011.
[26] 莱文森·南希. 基于系统思维构筑安全系统[M]. 唐涛, 牛儒, 译. 北京: 国防工业出版社, 2015: 6, 12.
LEVINSON N. Engineering A Safer World Systems Thinking Applied to Safety[M]. TANG Tao, NIU Ru, trans. Beijing: National Defense Industry Press, 2015: 6, 12.
[27] 钟义信. 机制主义人工智能理论——一种通用的人工智能理论[J]. 智能系统学报, 2018, 13(1): 2-18
ZHONG Yixin. Mechanism-based artificial intelligence theory: a universal theory of artificial intelligence[J]. CAAI transactions on intelligent systems, 2018, 13(1): 2-18
[28] CUI Tiejun, LI Shasha. System movement space and system mapping theory for reliability of IoT[J]. Future generation computer systems, 2020, 107: 70-81.

相似文献/References:

[1]崔铁军,李莎莎.少故障数据条件下SFEP最终事件发生概率分布确定方法[J].智能系统学报,2020,15(1):136.[doi:10.11992/tis.201911002]
 CUI Tiejun,LI Shasha.Determination method of target event occurrence probability in SFEP under the condition of less fault data[J].CAAI Transactions on Intelligent Systems,2020,15(4):136.[doi:10.11992/tis.201911002]
[2]崔铁军,李莎莎.安全科学中的故障信息转换定律[J].智能系统学报,2020,15(2):360.[doi:10.11992/tis.201811004]
 CUI Tiejun,LI Shasha.Conversion law of fault information in safety science[J].CAAI Transactions on Intelligent Systems,2020,15(4):360.[doi:10.11992/tis.201811004]
[3]崔铁军,李莎莎.SFEP文本因果关系提取及其与SFN转化研究[J].智能系统学报,2020,15(5):998.[doi:10.11992/tis.201907021]
 CUI Tiejun,LI Shasha.Causality extraction of SFEP text and its conversion to SFN[J].CAAI Transactions on Intelligent Systems,2020,15(4):998.[doi:10.11992/tis.201907021]
[4]崔铁军,李莎莎.空间故障网络的柔性逻辑描述[J].智能系统学报,2021,16(3):552.[doi:10.11992/tis.202003029]
 CUI Tiejun,LI Shasha.Flexible logic description of space fault network[J].CAAI Transactions on Intelligent Systems,2021,16(4):552.[doi:10.11992/tis.202003029]
[5]崔铁军,汪培庄.空间故障树与因素空间融合的智能可靠性分析方法[J].智能系统学报,2019,14(5):853.[doi:10.11992/tis.201807022]
 CUI Tiejun,WANG Peizhuang.Intelligent reliability analysis method based on space fault tree and factor space[J].CAAI Transactions on Intelligent Systems,2019,14(4):853.[doi:10.11992/tis.201807022]
[6]崔铁军,李莎莎.系统故障因果关系分析的智能驱动方式研究[J].智能系统学报,2021,16(1):92.[doi:10.11992/tis.202003001]
 CUI Tiejun,LI Shasha.Intelligent analysis of system fault data and fault causal relationship[J].CAAI Transactions on Intelligent Systems,2021,16(4):92.[doi:10.11992/tis.202003001]
[7]崔铁军,李莎莎.线性熵的系统故障熵模型及其时变研究[J].智能系统学报,2021,16(6):1136.[doi:10.11992/tis.202006034]
 CUI Tiejun,LI Shasha.System fault entropy model and its time-varying based on linear entropy[J].CAAI Transactions on Intelligent Systems,2021,16(4):1136.[doi:10.11992/tis.202006034]

备注/Memo

备注/Memo:
收稿日期:2020-03-31。
基金项目:国家自然科学基金项目(52004120);国家重点研发计划项目(2017YFC1503102);辽宁省教育厅科学研究经费项目(LJ2020QNL018);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-31)
作者简介:崔铁军,副教授,博士,主要研究方向为系统可靠性及系统故障智能分析理论。提出和建立了空间故障树理论及空间故障网络理论。发明专利20项。发表学术论文100余篇。出版学术专著5部;李莎莎,讲师,博士,主要研究方向为安全管理及其智能方法。参加了因素空间和空间故障树理论的研究。发明专利5项。发表学术论文20余篇。出版学术专著2部
通讯作者:崔铁军.E-mail:ctj.159@163.com
更新日期/Last Update: 1900-01-01