[1]陈强,王宇嘉,梁海娜,等.目标空间映射策略的高维多目标粒子群优化算法[J].智能系统学报,2021,16(2):362-370.[doi:10.11992/tis.202006042]
 CHEN Qiang,WANG Yujia,LIANG Haina,et al.Multi-objective particle swarm optimization algorithm based on an objective space papping strategy[J].CAAI Transactions on Intelligent Systems,2021,16(2):362-370.[doi:10.11992/tis.202006042]
点击复制

目标空间映射策略的高维多目标粒子群优化算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第16卷
期数:
2021年2期
页码:
362-370
栏目:
学术论文—人工智能基础
出版日期:
2021-03-05

文章信息/Info

Title:
Multi-objective particle swarm optimization algorithm based on an objective space papping strategy
作者:
陈强 王宇嘉 梁海娜 孙欣
上海工程技术大学 电子电气工程学院,上海 201620
Author(s):
CHEN Qiang WANG Yujia LIANG Haina SUN Xin
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
关键词:
目标空间映射策略性能指标反向学习粒子群高维多目标优化Pareto准则收敛性分布性
Keywords:
objective space mapping strategyperformance indexopposition learningparticle swarm optimizationhigh-dimensional multi-objective optimizationPareto based criterionconvergencediversity
分类号:
TP18
DOI:
10.11992/tis.202006042
摘要:
为了平衡优化算法在高维多目标优化问题中收敛性和多样性之间的关系,增加算法的选择压力,本文提出了一种基于目标空间映射策略的高维多目标粒子群优化算法(many-objective particle swarm optimization algorithm based on objective space mapping strategy,MOPSO-OSM)。在求解高维多目标优化问题时,Pareto准则难以从众多的非支配解中确定最优“折中”解,因此将高维多目标空间映射为以收敛性和多样性评价指标的2维空间,再将上述2维空间根据性能指标的优劣划分为4个不同区域。同时,使用反向学习策略提高算法跳出局部最优的能力。实验表明,MOPSO-OSM算法可以有效平衡收敛性和多样性之间的关系,达到求解复杂多目标优化问题的目的。
Abstract:
To balance the relationship between the convergence and diversity of the optimization algorithm in the multi-objective problem, the selection pressure of the algorithm is increased. A high-dimensional MOPSO-OSM (multi-objective particle swarm optimization algorithm based on objective space mapping strategy) is proposed in this paper. When solving high-dimensional multi-objective optimization problems, the Pareto based criterion cannot identify the best compromise solutions from many nondominated solutions. Therefore, the high-dimensional multi-objective optimization space is mapped into two-dimensional space based on indexes of convergence and diversity. Then, the two-dimensional space is divided into four regions according to the performance index. Simultaneously, the ability of the jumping local optimal solution is improved using the opposition learning strategy. The experimental results show that MOPSO-OSM can balance the relationship between convergence and diversity and solve complex problems.

参考文献/References:

[1] ISHIBUCHI H, TSUKAMOTO N, NOJIMA Y. Evolutionary many-objective optimization:a short review[C]//2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Hong Kong, China, 2008:266-271.
[2] 刘建昌, 李飞, 王洪海, 等. 进化高维多目标优化算法研究综述[J]. 控制与决策, 2018, 33(5):879-887
LIU Jianchang, LI Fei, WANG Honghai, et al. Survey on evolutionary many-objective optimization algorithms[J]. Control and decision, 2018, 33(5):879-887
[3] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2):182-197.
[4] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I:solving problems with box constraints[J]. IEEE transactions on evolutionary computation, 2014, 18(4):577-601.
[5] 汤恺祥, 许峰. 基于大数据聚类的改进NSGA-Ⅲ算法[J]. 信息记录材料, 2020, 21(5):109-112
TANG Kaixiang, XU Feng. Improved NSGA-III algorithm based on big data clustering[J]. Information recording materials, 2020, 21(5):109-112
[6] ZOU Juan, FU Liuwei, ZHENG Jinhua, et al. A many-objective evolutionary algorithm based on rotated grid[J]. Applied soft computing, 2018, 67:596-609.
[7] LIN Qiuzhen, LIU Songbai, TANG Chaoyu, et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems[J]. IEEE transactions on evolutionary computation, 2018, 22(1):32-46.
[8] ZHANG Qingfu, LI Hui. MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J]. IEEE transactions on evolutionary computation, 2008, 11(6):712-731.
[9] LIU Hailin, GU Fangqing, ZHANG Qingfu. Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems[J]. IEEE transactions on evolutionary computation, 2014, 18(3):450-455.
[10] LI Ke, DEB K, ZHANG Qingfu, et al. An evolutionary many-objective optimization algorithm based on dominance and decomposition[J]. IEEE transactions on evolutionary computation, 2015, 19(5):694-716.
[11] LIU Songbai, LIN Qiuzhen, TAN K C, et al. A fuzzy decomposition-based Multi/many-objective evolutionary algorithm[J]. IEEE transactions on cybernetics, 2020:1-15.
[12] ZITZLER E, KüNZLI S. Indicator-based selection in multiobjective search[C]//International Conference on Parallel Problem Solving from Nature. Berlin, Heidelberg:Springer, 2004:832-842.
[13] BADER J, ZITZLER E. HypE:an algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary computation, 2011, 19(1):45-76.
[14] MENCHACA-MENDEZ A, COELLO C A C. GDE-MOEA:a new MOEA based on the generational distance indicator and ε-dominance[C]//2015 IEEE Congress on Evolutionary Computation (CEC). Sendai, Japan:IEEE, 2015:947-955.
[15] TIAN Ye, CHENG Ran, ZHANG Xingyi, et al. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility[J]. IEEE transactions on evolutionary computation, 2018, 22(4):609-622.
[16] LI Fei, CHENG Ran, LIU Jianchang, et al. A two-stage R2 indicator based evolutionary algorithm for many-objective optimization[J]. Applied soft computing, 2018, 67:245-260.
[17] LI Miqing, YANG Shengxiang, LIU Xiaohui. Bi-goal evolution for many-objective optimization problems[J]. Artificial intelligence, 2015, 228:45-65.
[18] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Network. Perth, Australia, 1995:1942-1948.
[19] SHI Y, EBERHART R C. A modified particle swarm optimizer[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360). Anchorage, USA, 1998:73-79.
[20] CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space[J]. IEEE transactions on evolutionary computation, 2002, 6(1):58-73.
[21] VENTER G, SOBIESZCZANSKI-SOBIESKI J. Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization[J]. Structural and multidisciplinary optimization, 2004, 26:121-131.
[22] MA Borong, HUA Jun, MA Zhixin, et al. IMOPSO:an improved multi-objective particle swarm optimization algorithm[C]//20165th International Conference on Computer Science and Network Technology (ICCSNT). Changchun, China, 2016:376-380.
[23] QI Changxing, BI Yiming, HAN Huihua, et al. A hybrid particle swarm optimization algorithm[C]//20173rd IEEE International Conference on Computer and Communications (ICCC). Chengdu, China, 2017:2187-2190.
[24] KENNEDY J. Bare bones particle swarms[C]//Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS’03(Cat. No. 03EX706). Indianapolis, USA, 2003:80-87.
[25] YUE Caitong, QU Boyang, LIANG Jing. A multiobjective particle swarm optimizer using ring topology for Solving multimodal multiobjective problems[J]. IEEE transactions on evolutionary computation, 2018, 22(5):805-817.
[26] 侯翔, 蒲国林. 协同粒子群优化算法的改进与仿真[J]. 计算机工程与设计, 2015, 36(6):1530-1534
HOU Xiang, PU Guolin. Improvement of its cooperative particle swarm optimization algorithm and simulation[J]. Computer engineering and design, 2015, 36(6):1530-1534
[27] LIN Qiuzhen, LI Jianqiang, DU Zhihua, et al. A novel multi-objective particle swarm optimization with multiple search strategies[J]. European Journal of operational research, 2015, 247(3):732-744.
[28] ZAIN M Z B M, KANESAN J, CHUAH J H, et al. A multi-objective particle swarm optimization algorithm based on dynamic boundary search for constrained optimization[J]. Applied soft computing, 2018, 70:680-700.
[29] COELLO C A C, LECHUGA M S. MOPSO:a proposal for multiple objective particle swarm optimization[C]//Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02(Cat. No. 02TH8600). Honolulu, USA, 2002, 1051-1056.
[30] WANG Hui, WU Zhijian, RAHNAMAYAN S, et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information sciences, 2011, 181(20):4699-4714.
[31] 马灿, 刘坚, 余方平. 混合模拟退火的布谷鸟算法研究[J]. 小型微型计算机系统, 2016, 37(9):2029-2034
MA Can, LIU Jian, YU Fangping. Research on cuckoo algorithm with simulated annealing[J]. Journal of Chinese computer systems, 2016, 37(9):2029-2034
[32] CHENG Ran, JIN Yaochu, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE transactions on evolutionary computation, 2016, 20(5):773-791.
[33] CORNE D W, JERRAM N R, KNOWLES J D, et al. PESA-II:region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation. Morgan Kaufmann Publishers Inc, 2001:283-290.

相似文献/References:

[1]张江强,赵宁,刘文奇.具有两类请求的云计算中心服务器数量的优化[J].智能系统学报,2017,12(05):601.[doi:10.11992/tis.201703042]
 ZHANG Jiangqiang,ZHAO Ning,LIU Wenqi.Optimization of the number of servers in a cloud computation center with two demand classes[J].CAAI Transactions on Intelligent Systems,2017,12(2):601.[doi:10.11992/tis.201703042]
[2]田勇,王洪光,潘新安,等.协作机器人的构型分析研究[J].智能系统学报,2019,14(2):217.[doi:10.11992/tis.201806044]
 TIAN Yong,WANG Hongguang,PAN Xinan,et al.Research on configuration analysis of collaborative robots[J].CAAI Transactions on Intelligent Systems,2019,14(2):217.[doi:10.11992/tis.201806044]

备注/Memo

备注/Memo:
收稿日期:2020-06-24。
基金项目:国家自然科学基金项目(61403249)
作者简介:陈强,硕士研究生,主要研究方向为进化计算和多目标优化;王宇嘉,副教授,博士,主要研究方向为进化计算、群智能和目标优化。发表学术论文16篇;梁海娜,硕士研究生,主要研究方向为进化计算和群智能
通讯作者:王宇嘉.E-mail:yjwangamber@sues.edu.cn
更新日期/Last Update: 2021-04-25