[1]张江强,赵宁,刘文奇.具有两类请求的云计算中心服务器数量的优化[J].智能系统学报,2017,(05):601-607.[doi:10.11992/tis.201703042]
 ZHANG Jiangqiang,ZHAO Ning,LIU Wenqi.Optimization of the number of servers in a cloud computation center with two demand classes[J].CAAI Transactions on Intelligent Systems,2017,(05):601-607.[doi:10.11992/tis.201703042]
点击复制

具有两类请求的云计算中心服务器数量的优化(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2017年05期
页码:
601-607
栏目:
出版日期:
2017-10-25

文章信息/Info

Title:
Optimization of the number of servers in a cloud computation center with two demand classes
作者:
张江强 赵宁 刘文奇
昆明理工大学 理学院, 云南 昆明 650500
Author(s):
ZHANG Jiangqiang ZHAO Ning LIU Wenqi
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
关键词:
云计算排队系统两类请求性能指标能耗成本服务器数量的优化
Keywords:
cloud computingqueuing systemtwo demand classesperformance measurepower consumptioncostoptimization of the number of servers
分类号:
TP393.02
DOI:
10.11992/tis.201703042
摘要:
为提高云计算中心的服务质量,节约系统成本,针对具有两类用户请求的云计算中心,提出云计算中心的服务器数量的优化方案。首先,建立了具有两类用户请求的排队模型,分析系统的稳态概率分布、平均队长等性能指标;然后,建立了云计算中心的能耗模型;最后,联合系统的等待成本和能耗成本,构建系统的成本函数,对系统的服务器数量进行优化,从而使系统的成本最小。数值分析结果表明最优服务器数量是用户请求到达率的非减函数,为了使系统成本最小,云计算中心需要动态调整服务器的数量。
Abstract:
In order to improve the service quality and to save the system cost of the cloud computing center, for a cloud computing center with two demand classes, a method to optimize the number of servers was proposed. First, a queuing model having two demand classes was established for analyzing performance measures such as distribution of the probability of stability and mean queue length; next, a power consumption model was established on the cloud computing center; finally, the wait and power-consumption cost of the system were used together to construct the cost function of the system and optimize the server quantity for realizing the lowest cost. The numerical results show that the optimal number of servers is a non-decreasing function of the arrival rate of demands. To minimize the system cost, dynamically adjusting the number of servers is necessary.

参考文献/References:

[1] 廖倩文, 潘久辉, 王开杰. 基于排队理论的云计算中心性能分析模型[J]. 计算机工程, 2015, 41(9):51-55.LIAO Qianwen, PAN Jiuhui, WANG Kaijie. Performance analysis model of cloud computing center based on queueing theory[J]. Computer engineering, 2015, 41(9):51-55.
[2] 徐小龙,杨庚,李玲娟,等. 面向绿色云计算数据中心的动态数据聚集算法[J]. 系统工程与电子技术, 2012, 34(9):1923-1929.XU Xiaolong, YANG Geng, LI Lingjuan, el al. Dynamic data aggregation algorithm for data centers of green cloud computing[J]. Systems engineering and electronics, 2012, 34(9):1923-1929.
[3] 许丞, 刘洪, 谭良. Hadoop云平台的一种新的任务调度和监控机制[J]. 计算机科学, 2013, 40(1):112-117.XU Chen, LIU Hong, TAN Liang. New mechanism of monitoring on Hadoop cloud platform[J]. Computer science, 2013, 40(1):112-117.
[4] 倪志伟, 李蓉蓉, 方清华,等. 基于离散人工蜂群算法的云任务调度优化[J]. 计算机应用, 2016, 36(1):107-112,121.NI Zhiwei, LI Rongrong, FANG Qinghua,et al. Optimization of cloud task scheduling based on discrete artificaial bee colony algorithm[J]. Journal of computer applications, 2016, 36(1):107-112,121.
[5] 罗亮, 吴文峻, 张飞. 面向云计算数据中心的能耗建模方法[J]. 软件学报, 2014, 25(7):1371-1387.LUO Liang, WU Wenjun, ZHANG Fei. Energy modeling based on cloud data center[J]. Journal of software, 2014, 25(7):1371-1387.
[6] CAO J, LI K, STOJMENOVIC I. Optimal power allocation and load distribution for multiple heterogeneous multicore server processors across clouds and data centers[J]. IEEE transactions on computers, 2014, 63(1):45-58.
[7] 何怀文, 傅瑜, 杨亮,等. 性能受限下云中心异构服务器的能耗优化[J]. 计算机应用, 2015, 35(1):39-42,61.HE Huaiwen,FU Yu,YANG Liang, et al. Optimal power consumption of heterogeneous servers in cloud center under performance constraint[J]. Journal of computer applications, 2015, 35(1):39-42,61.
[8] 谭一鸣, 曾国荪, 王伟. 随机任务在云计算平台中能耗的优化管理方法[J]. 软件学报,2012, 23(2):266-278.TAN Yiming, ZENG Guosun, WANG Wei. Policy of energy optimal management for cloud computing platform with stochastic tasks[J]. Journal of software, 2012, 23(2):266-278.
[9] KE M, YEH C, SU C. Cloud computing platform for real-time measurement and verification of energy performance[J]. Applied energy, 2017, 188:497-507.
[10] SINGH S, CHANA I. EARTH:Energy-aware autonomic resource scheduling in cloud computing[J]. Journal of intelligent & fuzzy systems, 2016, 30(3):1581-1600.
[11] TAO F, LI C, LIAO T, et al. BGM-BLA:a new algorithm for dynamic migration of virtual machines in cloud computing[J]. IEEE transactions on services computing, 2016, 9(6):910-925.
[12] MEI J, LI K, OUYANG A, et al. A profit maximization scheme with guaranteed quality of service in cloud computing[J]. IEEE transactions on computers, 2015, 64(11):3064-3078.
[13] QI Q, LIAO J, WANG J.Integrated multi-service handoff mechanism with QoS-support strategy in mobile cloud computing[J]. Wireless personal communications, 2016, 87(2):593-614.
[14] HUANG Z, LU Y, OUYANG H. Scheduling strategy based on genetic algorithm for cloud computer energy optimization[C]//2015 IEEE International Conference on Communication Problem-Solving. Guilin, China, 2015:516-519.
[15] YANG B, LI Z, CHEN S, et al. Stackelberg game approach for energy-aware resource allocation in data centers[J]. IEEE transactions on parallel and distributed systems, 2016, 27(12):3646-3658.
[16] SURESH S, SAKTHIVEL S. System modeling and evaluation on factors influencing power and performance management of cloud load balancing algorithms[J]. Journal of web engineering, 2016, 15(5/6):484-500.
[17] 李春艳,何一舟,戴彬. Hadoop平台的多队列作业调度优化方法研究[J]. 计算机应用研究, 2014(03):705-707,738.LI Chunyan, HE Yizhou, DAI Bin. Research on optimization of job scheduling based on multi-queue for Hadoop platform[J]. Application research of computers, 2014(3):705-707, 738.
[18] LIU C, LI K, XU C, et al. Strategy configurations of multiple users competition for cloud service reservation[J].IEEE transactions on parallel and distributed systems, 2016, 27(2):508-520.
[19] ZHURAVLEV S, CARLOS SAEZ J, BLAGODUROV S. Survey of energy-cognizant scheduling techniques[J]. IEEE transactions on parallel and distributed systems, 2013, 24(7):1447-1464.

相似文献/References:

[1]何清.物联网与数据挖掘云服务[J].智能系统学报,2012,(03):189.
 HE Qing.The Internet of things and the data mining cloud service[J].CAAI Transactions on Intelligent Systems,2012,(05):189.
[2]黄河燕,曹朝,冯冲.大数据情报分析发展机遇及其挑战[J].智能系统学报,2016,(6):719.[doi:10.11992/tis.201610025]
 HUANG Heyan,CAO Zhao,FENG Chong.Opportunities and challenges of big data intelligence analysis[J].CAAI Transactions on Intelligent Systems,2016,(05):719.[doi:10.11992/tis.201610025]
[3]严新平,柳晨光.智能航运系统的发展现状与趋势[J].智能系统学报,2016,(6):807.[doi:10.11992/tis.201605007]
 YAN Xinping,LIU Chenguang.Review and prospect for intelligent waterway transportation system[J].CAAI Transactions on Intelligent Systems,2016,(05):807.[doi:10.11992/tis.201605007]

备注/Memo

备注/Memo:
收稿日期:2017-03-27。
基金项目:国家自然科学基金项目(71501086,61573173).
作者简介:张江强,男,1992年生,硕士研究生,主要研究方向为排队论;赵宁,女,1980年生,副教授,博士,主要研究方向为排队论。发表学术论文10余篇;刘文奇,男,1965年生,教授,主要研究方向为数据挖掘和决策分析。发表学术论文40余篇,出版学术专著2部。
通讯作者:赵宁.E-mail:zhaoning@kmust.edu.cn
更新日期/Last Update: 2017-10-25