[1]邱华鑫,段海滨,范彦铭,等.鸽群交互模式切换模型及其同步性分析[J].智能系统学报,2020,15(2):334-343.[doi:10.11992/tis.201904052]
 QIU Huaxin,DUAN Haibin,FAN Yanming,et al.Pigeon flock interaction pattern switching model and its synchronization analysis[J].CAAI Transactions on Intelligent Systems,2020,15(2):334-343.[doi:10.11992/tis.201904052]
点击复制

鸽群交互模式切换模型及其同步性分析(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年2期
页码:
334-343
栏目:
学术论文—人工智能基础
出版日期:
2020-07-09

文章信息/Info

Title:
Pigeon flock interaction pattern switching model and its synchronization analysis
作者:
邱华鑫12 段海滨13 范彦铭4 邓亦敏1 魏晨1
1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083;
2. 中国空间技术研究院 钱学森空间技术实验室, 北京 100094;
3. 鹏城实验室, 深圳 518000;
4. 中国航空工业集团公司 沈阳飞机设计研究所, 辽宁 沈阳 110035
Author(s):
QIU Huaxin12 DUAN Haibin13 FAN Yanming4 DENG Yimin1 WEI Chen1
1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
2. QIAN Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China;
3. Peng Cheng Laboratory, Shenzhen 518000
关键词:
鸽群群体智能群集运动异构群体层级交互模式平等交互模式交互模式切换同步性
Keywords:
pigeon flockswarm intelligencecollective motionheterogeneous grouphierarchical interaction patternegalitarian interaction patterninteraction pattern switchingsynchronization
分类号:
TP13;V249.122
DOI:
10.11992/tis.201904052
摘要:
以原鸽为研究对象,归纳出其群体归巢机制中的双模式决策原则、模式切换原则与优势个体原则。模拟双模式决策原则设定双模式邻居集合与对齐权重,模拟模式切换原则设定基于群体轨迹曲率的切换规则,模拟优势个体原则设定高层级个体集合,进而建立鸽群交互模式切换模型。基于LaSalle不变集理论给出鸽群系统以无碰撞、同步编队抵近目标的条件。采用蒙特卡罗仿真分析不同参数对模型特性的影响,即不同个体数目、高层级个体数目以及最大速率均可保证模型的同步性。
Abstract:
Taking Columba livia as the research object, we summarized the dual-mode decision-making, mode-switching, and dominant individual principles in the homing mechanism of pigeons to establish a pigeon flock interaction pattern switching model. In the model, the neighbor set and alignment weight in dual mode were set by mimicking the dual-mode decision-making principle, the switching rule based on the curvature of the group trajectory was set by mimicking the mode-switching principle, and the collection of higher-rank individuals was set by mimicking the dominant individual principle. On the basis of LaSalle’s invariant set theory, the conditions under which the pigeon flock can approach the target with collision-free and synchronous formations are given. Monte Carlo simulation was used to analyze the influence of different parameters on the model characteristics. Results show that the synchronization of the model can be ensured by setting the appropriate number of individuals, number of higher-rank individuals, and maximum velocity.

参考文献/References:

[1] BAJEC I L, HEPPNER F H. Organized flight in birds[J]. Animal behaviour, 2009, 78(4): 777-789.
[2] REN Jiaping, SUN Wanxuan, MANOCHA D, et al. Stable information transfer network facilitates the emergence of collective behavior of bird flocks[J]. Physical review E, 2018, 98(5): 052309.
[3] SAINZ-BORGO C, KOFLER S, JAFFE K. On the adaptive characteristics of bird flocks: small birds form mixed flocks[J]. Ornitología neotropical, 2018, 29: 289-296.
[4] CHEN Duxin, LIU Xiaolu, XU Bowen, et al. Intermittence and connectivity of interactions in pigeon flock flights[J]. Scientific reports, 2017, 7(1): 10452.
[5] CHEN Duxin, XU Bowen, ZHU Tao, et al. Anisotropic interaction rules in circular motions of pigeon flocks: an empirical study based on sparse Bayesian learning[J]. Physical review E, 2017, 96(2): 022411.
[6] BALLERINI M, CABIBBO N, CANDELIER R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[J]. Proceedings of the national academy of sciences of the United States of America, 2008, 105(4): 1232-1237.
[7] NAGY M, áKOS Z, BIRO D, et al. Hierarchical group dynamics in pigeon flocks[J]. Nature, 2010, 464(7290): 890-893.
[8] ZAFEIRIS A, VICSEK T. Advantages of hierarchical organization: from pigeon flocks to optimal network structures[C]//Proceedings of Research in the Decision Sciences for Global Business: Best Papers from the 2013 Annual Conference. New Jersey, United States, 2015: 281?282.
[9] FLACK A, BIRO D, GUILFORD T, et al. Modelling group navigation: transitive social structures improve navigational performance[J]. Journal of the royal society interface, 2015, 12(108): 20150213.
[10] CHEN Zhiyong, ZHANG Haitao, CHEN Xi, et al. Two-level leader-follower organization in pigeon flocks[J]. EPL (Europhysics letters), 2015, 112(2): 20008.
[11] NAGY M, VáSáRHELYI G, PETTIT B, et al. Context-dependent hierarchies in pigeons[J]. Proceedings of the national academy of sciences of the United States of America, 2013, 110(32): 13049-13054.
[12] BIRO D, SASAKI T, PORTUGAL S J. Bringing a time-depth perspective to collective Animal Behaviour[J]. Trends in ecology & evolution, 2016, 31(7): 550-562.
[13] PETTIT B, PERNA A, BIRO D, et al. Interaction rules underlying group decisions in homing pigeons[J]. Journal of the royal society interface, 2013, 10(89): 20130529.
[14] PETTIT B, áKOS Z, VICSEK T, et al. Speed determines leadership and leadership determines learning during pigeon flocking[J]. Current biology, 2015, 25(23): 3132-3137.
[15] FREEMAN R, MANN R, GUILFORD T, et al. Group decisions and individual differences: route fidelity predicts flight leadership in homing pigeons (Columba livia)[J]. Biology letters, 2010, 7(1): 63-66.
[16] FLACK A, PETTIT B, FREEMAN R, et al. What are leaders made of? The role of individual experience in determining leader-follower relations in homing pigeons[J]. Animal behaviour, 2012, 83(3): 703-709.
[17] WATTS I, PETTIT B, NAGY M, et al. Lack of experience-based stratification in homing pigeon leadership hierarchies[J]. Royal Society open science, 2016, 3(1): 150518.
[18] ZHANG Haitao, CHEN Zhiyong, VICSEK T, et al. Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks[J]. Scientific reports, 2014, 4(1): 5805.
[19] CHEN Duxin, VICSEK T, LIU Xiaolu, et al. Switching hierarchical leadership mechanism in homing flight of pigeon flocks[J]. EPL (Europhysics letters), 2016, 114(6): 60008.
[20] 陈杰, 方浩, 辛斌. 多智能体系统的协同群集运动控制[M]. 北京: 科学出版社, 2017.
[21] KHALIL H K. Noninear systems[M]. New Jersey: Prentice-Hall, 1996.
[22] VICSEK T, CZIRóK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical review letters, 1995, 75(6): 1226-1229.
[23] 罗琪楠. 基于鸽群行为机制的多无人机协调围捕及验证[D]. 北京: 北京航空航天大学, 2017.
[24] LUO Qi’nan. Research on cooperative control and pursuit-evasion strategy of multi-UAV based on pigeon behavioral mechanisms[D]. Beijing: Beihang University, 2017.
[25] 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京: 科学出版社, 2018.

相似文献/References:

[1]康 琦,汪 镭,刘小莉,等.基于群体智能框架理念的遗传算法总体模式描述[J].智能系统学报,2007,2(05):42.
 KANG Qi,WANG Lei,LIU Xiao-li,et al.General mode description genetic algorithms based on a framework of swarm intelligence[J].CAAI Transactions on Intelligent Systems,2007,2(2):42.
[2]杨东升,康 琦,刘 波,等.面向生产系统的残次品主次成因的群体智能分析[J].智能系统学报,2009,4(06):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
 YANG Dong-sheng,KANG Qi,LIU Bo,et al.Swarm intelligence analysis of primary and secondary causes of defective products for manufacturing system[J].CAAI Transactions on Intelligent Systems,2009,4(2):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
[3]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(01):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10(2):1.[doi:10.3969/j.issn.1673-4785.201403072]
[4]陈杰,沈艳霞,陆欣.基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报,2016,11(2):172.[doi:10.11992/tis.201506024]
 CHEN Jie,SHEN Yanxia,LU Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI Transactions on Intelligent Systems,2016,11(2):172.[doi:10.11992/tis.201506024]
[5]秦全德,程适,李丽,等.人工蜂群算法研究综述[J].智能系统学报,2014,9(02):127.[doi:10.3969/j.issn.1673-4785.201309064]
 QIN Quande,CHENG Shi,LI Li,et al.Artificial bee colony algorithm: a survey[J].CAAI Transactions on Intelligent Systems,2014,9(2):127.[doi:10.3969/j.issn.1673-4785.201309064]
[6]谭营,郑少秋.烟花算法研究进展[J].智能系统学报,2014,9(05):515.[doi:10.3969/j.issn.1673-4785.201409010]
 TAN Ying,ZHENG Shaoqiu.Recent advances in fireworks algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(2):515.[doi:10.3969/j.issn.1673-4785.201409010]
[7]顾大强,郑文钢.多移动机器人协同搬运技术综述[J].智能系统学报,2019,14(01):20.[doi:10.11992/tis.201801038]
 GU Daqiang,ZHENG Wengang.Technologies for cooperative transportation by multiple mobile robots[J].CAAI Transactions on Intelligent Systems,2019,14(2):20.[doi:10.11992/tis.201801038]
[8]李景灿,丁世飞.基于人工鱼群算法的孪生支持向量机[J].智能系统学报,2019,14(06):1121.[doi:10.11992/tis.201905025]
 LI Jingcan,DING Shifei.Twin support vector machine based on artificial fish swarm algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(2):1121.[doi:10.11992/tis.201905025]
[9]吴一全,周建伟.布谷鸟搜索算法研究及其应用进展[J].智能系统学报,2020,15(3):435.[doi:10.11992/tis.201811005]
 WU Yiquan,ZHOU Jianwei.Overview of the cuckoo search algorithm and its applications[J].CAAI Transactions on Intelligent Systems,2020,15(2):435.[doi:10.11992/tis.201811005]

备注/Memo

备注/Memo:
收稿日期:2019-04-22。
基金项目:国家杰出青年科学基金项目(61425008);国家自然科学基金项目(61803011,91948204);中国博士后科学基金资助项目
作者简介:邱华鑫,博士后,主要研究方向为群体智能、无人机自主控制;段海滨,教授,博士生导师,国家杰出青年科学基金获得者,万人计划?科技创新领军人才,主要研究方向为无人机集群自主控制、计算机仿生视觉与智能感知、仿生智能计算理论及应用。主持国家自然科学基金重点项目等课题,出版专著3部,发表学术论文200余篇;范彦铭,研究员,博士生导师,航空工业首批首席专家,主要研究方向为先进飞行器控制律设计与实现、无人机自主飞行控制。主持国家级研究项目10余项,获国家科技进步二等奖、国防科技进步特等奖,发表学术论文30余篇
通讯作者:段海滨.E-mail:hbduan@buaa.edu.cn
更新日期/Last Update: 1900-01-01