QIU Huaxin,DUAN Haibin,FAN Yanming,et al.Pigeon flock interaction pattern switching model and its synchronization analysis[J].CAAI Transactions on Intelligent Systems,2020,15(2):334-343.[doi:10.11992/tis.201904052]





Pigeon flock interaction pattern switching model and its synchronization analysis
邱华鑫12 段海滨13 范彦铭4 邓亦敏1 魏晨1
1. 北京航空航天大学 自动化科学与电气工程学院, 北京 100083;
2. 中国空间技术研究院 钱学森空间技术实验室, 北京 100094;
3. 鹏城实验室, 深圳 518000;
4. 中国航空工业集团公司 沈阳飞机设计研究所, 辽宁 沈阳 110035
QIU Huaxin12 DUAN Haibin13 FAN Yanming4 DENG Yimin1 WEI Chen1
1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;
2. QIAN Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China;
3. Peng Cheng Laboratory, Shenzhen 518000
pigeon flockswarm intelligencecollective motionheterogeneous grouphierarchical interaction patternegalitarian interaction patterninteraction pattern switchingsynchronization
Taking Columba livia as the research object, we summarized the dual-mode decision-making, mode-switching, and dominant individual principles in the homing mechanism of pigeons to establish a pigeon flock interaction pattern switching model. In the model, the neighbor set and alignment weight in dual mode were set by mimicking the dual-mode decision-making principle, the switching rule based on the curvature of the group trajectory was set by mimicking the mode-switching principle, and the collection of higher-rank individuals was set by mimicking the dominant individual principle. On the basis of LaSalle’s invariant set theory, the conditions under which the pigeon flock can approach the target with collision-free and synchronous formations are given. Monte Carlo simulation was used to analyze the influence of different parameters on the model characteristics. Results show that the synchronization of the model can be ensured by setting the appropriate number of individuals, number of higher-rank individuals, and maximum velocity.


[1] BAJEC I L, HEPPNER F H. Organized flight in birds[J]. Animal behaviour, 2009, 78(4): 777-789.
[2] REN Jiaping, SUN Wanxuan, MANOCHA D, et al. Stable information transfer network facilitates the emergence of collective behavior of bird flocks[J]. Physical review E, 2018, 98(5): 052309.
[3] SAINZ-BORGO C, KOFLER S, JAFFE K. On the adaptive characteristics of bird flocks: small birds form mixed flocks[J]. Ornitología neotropical, 2018, 29: 289-296.
[4] CHEN Duxin, LIU Xiaolu, XU Bowen, et al. Intermittence and connectivity of interactions in pigeon flock flights[J]. Scientific reports, 2017, 7(1): 10452.
[5] CHEN Duxin, XU Bowen, ZHU Tao, et al. Anisotropic interaction rules in circular motions of pigeon flocks: an empirical study based on sparse Bayesian learning[J]. Physical review E, 2017, 96(2): 022411.
[6] BALLERINI M, CABIBBO N, CANDELIER R, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study[J]. Proceedings of the national academy of sciences of the United States of America, 2008, 105(4): 1232-1237.
[7] NAGY M, áKOS Z, BIRO D, et al. Hierarchical group dynamics in pigeon flocks[J]. Nature, 2010, 464(7290): 890-893.
[8] ZAFEIRIS A, VICSEK T. Advantages of hierarchical organization: from pigeon flocks to optimal network structures[C]//Proceedings of Research in the Decision Sciences for Global Business: Best Papers from the 2013 Annual Conference. New Jersey, United States, 2015: 281?282.
[9] FLACK A, BIRO D, GUILFORD T, et al. Modelling group navigation: transitive social structures improve navigational performance[J]. Journal of the royal society interface, 2015, 12(108): 20150213.
[10] CHEN Zhiyong, ZHANG Haitao, CHEN Xi, et al. Two-level leader-follower organization in pigeon flocks[J]. EPL (Europhysics letters), 2015, 112(2): 20008.
[11] NAGY M, VáSáRHELYI G, PETTIT B, et al. Context-dependent hierarchies in pigeons[J]. Proceedings of the national academy of sciences of the United States of America, 2013, 110(32): 13049-13054.
[12] BIRO D, SASAKI T, PORTUGAL S J. Bringing a time-depth perspective to collective Animal Behaviour[J]. Trends in ecology & evolution, 2016, 31(7): 550-562.
[13] PETTIT B, PERNA A, BIRO D, et al. Interaction rules underlying group decisions in homing pigeons[J]. Journal of the royal society interface, 2013, 10(89): 20130529.
[14] PETTIT B, áKOS Z, VICSEK T, et al. Speed determines leadership and leadership determines learning during pigeon flocking[J]. Current biology, 2015, 25(23): 3132-3137.
[15] FREEMAN R, MANN R, GUILFORD T, et al. Group decisions and individual differences: route fidelity predicts flight leadership in homing pigeons (Columba livia)[J]. Biology letters, 2010, 7(1): 63-66.
[16] FLACK A, PETTIT B, FREEMAN R, et al. What are leaders made of? The role of individual experience in determining leader-follower relations in homing pigeons[J]. Animal behaviour, 2012, 83(3): 703-709.
[17] WATTS I, PETTIT B, NAGY M, et al. Lack of experience-based stratification in homing pigeon leadership hierarchies[J]. Royal Society open science, 2016, 3(1): 150518.
[18] ZHANG Haitao, CHEN Zhiyong, VICSEK T, et al. Route-dependent switch between hierarchical and egalitarian strategies in pigeon flocks[J]. Scientific reports, 2014, 4(1): 5805.
[19] CHEN Duxin, VICSEK T, LIU Xiaolu, et al. Switching hierarchical leadership mechanism in homing flight of pigeon flocks[J]. EPL (Europhysics letters), 2016, 114(6): 60008.
[20] 陈杰, 方浩, 辛斌. 多智能体系统的协同群集运动控制[M]. 北京: 科学出版社, 2017.
[21] KHALIL H K. Noninear systems[M]. New Jersey: Prentice-Hall, 1996.
[22] VICSEK T, CZIRóK A, BEN-JACOB E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical review letters, 1995, 75(6): 1226-1229.
[23] 罗琪楠. 基于鸽群行为机制的多无人机协调围捕及验证[D]. 北京: 北京航空航天大学, 2017.
[24] LUO Qi’nan. Research on cooperative control and pursuit-evasion strategy of multi-UAV based on pigeon behavioral mechanisms[D]. Beijing: Beihang University, 2017.
[25] 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京: 科学出版社, 2018.


[1]康 琦,汪 镭,刘小莉,等.基于群体智能框架理念的遗传算法总体模式描述[J].智能系统学报,2007,2(05):42.
 KANG Qi,WANG Lei,LIU Xiao-li,et al.General mode description genetic algorithms based on a framework of swarm intelligence[J].CAAI Transactions on Intelligent Systems,2007,2(2):42.
[2]杨东升,康 琦,刘 波,等.面向生产系统的残次品主次成因的群体智能分析[J].智能系统学报,2009,4(06):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
 YANG Dong-sheng,KANG Qi,LIU Bo,et al.Swarm intelligence analysis of primary and secondary causes of defective products for manufacturing system[J].CAAI Transactions on Intelligent Systems,2009,4(2):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10(2):1.[doi:10.3969/j.issn.1673-4785.201403072]
 CHEN Jie,SHEN Yanxia,LU Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI Transactions on Intelligent Systems,2016,11(2):172.[doi:10.11992/tis.201506024]
 QIN Quande,CHENG Shi,LI Li,et al.Artificial bee colony algorithm: a survey[J].CAAI Transactions on Intelligent Systems,2014,9(2):127.[doi:10.3969/j.issn.1673-4785.201309064]
 TAN Ying,ZHENG Shaoqiu.Recent advances in fireworks algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(2):515.[doi:10.3969/j.issn.1673-4785.201409010]
 GU Daqiang,ZHENG Wengang.Technologies for cooperative transportation by multiple mobile robots[J].CAAI Transactions on Intelligent Systems,2019,14(2):20.[doi:10.11992/tis.201801038]
 LI Jingcan,DING Shifei.Twin support vector machine based on artificial fish swarm algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(2):1121.[doi:10.11992/tis.201905025]
 WU Yiquan,ZHOU Jianwei.Overview of the cuckoo search algorithm and its applications[J].CAAI Transactions on Intelligent Systems,2020,15(2):435.[doi:10.11992/tis.201811005]


更新日期/Last Update: 1900-01-01