[1]吴一全,周建伟.布谷鸟搜索算法研究及其应用进展[J].智能系统学报,2020,15(3):435-444.[doi:10.11992/tis.201811005]
 WU Yiquan,ZHOU Jianwei.Overview of the cuckoo search algorithm and its applications[J].CAAI Transactions on Intelligent Systems,2020,15(3):435-444.[doi:10.11992/tis.201811005]
点击复制

布谷鸟搜索算法研究及其应用进展(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第15卷
期数:
2020年3期
页码:
435-444
栏目:
综述
出版日期:
2020-09-05

文章信息/Info

Title:
Overview of the cuckoo search algorithm and its applications
作者:
吴一全123 周建伟1
1. 南京航空航天大学 电子信息工程学院,江苏 南京 211106;
2. 北京市测绘设计研究院 城市空间信息工程北京市重点实验室,北京 100038;
3. 北大方正集团有限公司 数字出版技术国家重点实验室,北京 100871
Author(s):
WU Yiquan123 ZHOU Jianwei1
1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2. Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing Institute of Surveying and Mapping, Beijing 100038, China;
3. State Key Laboratory of Digital Publishing Technology, Peking University Founder Group Corp, Beijing 100871, China
关键词:
群体智能布谷鸟搜索算法启发式算法寄巢产卵莱维飞行自适应步长混沌种群多样性
Keywords:
swarm intelligencecuckoo search algorithmmetaheuristic algorithmnest spawningLevy flightsadaptive step sizechaoticpopulation diversity
分类号:
TP301.6
DOI:
10.11992/tis.201811005
摘要:
为进一步加强布谷鸟算法的搜寻能力并提升收敛速度,加快对算法的研究与应用进程,综述了布谷鸟算法的原理、研究概况和其他同类群体智能优化算法的比较及发展趋势。首先给出了算法的基本模型和实现步骤;然后重点阐述了基于发现概率和步长控制量、基于自适应步长、基于混沌理论、与其他算法混合、基于种群特征和种群变异、结合优化策略及基于种群多样性等方面的改进方法,总结了算法的主要应用领域及其进展;随后将其与遗传算法、蚁群优化算法、粒子群优化算法及人工蜂群优化算法的优点、缺点及适用性诸方面进行了对比;最后指出了布谷鸟搜索算法尚存在的缺陷并对进一步的研究方向进行了展望。
Abstract:
To improve the searching ability and convergence rate and further accelerate the research and application process of the algorithm, a review on the basic principles and state of the art and a comparison with other swarm intelligent optimization algorithms are performed, and the development trend is presented here. First, the basic model and steps of the cuckoo search algorithm are elaborated. Then, the improved methods of the cuckoo search algorithms are discussed, such as algorithms based on the discovery probability and step-size control parameter, algorithms based on the adaptive step size, algorithms based on chaos theory, combination algorithms with other algorithms, algorithms based on population characteristics and variations, combined optimization strategy, and algorithms based on population diversity. Their main application fields and progress are also summarized. Next, the cuckoo search algorithm is compared with a genetic algorithm, ant colony optimization algorithm, particle swarm optimization algorithm, and artificial bee colony algorithm in terms of advantages, disadvantages, and applicable scope. Finally, the existing problems of the algorithm are pointed out, and the research direction is prospected.

参考文献/References:

[1] ABACHIZADEH M, YAZDI M R H, YOUSEFI-KOMA A. Optimal tuning of PID controllers using artificial bee colony algorithm[C]//Proceedings of 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Montreal, Canada, 2010: 379-384.
[2] YANG Xinshe, DEB S. Cuckoo search via levy flights[C]// Proceedings of 2009 World Congress on Nature & Biologically Inspired Computing. Coimbatore, India, 2009: 210-214.
[3] YANG Xinshe, DEB S. Engineering optimisation by cuckoo search[J]. International journal of mathematical modelling and numerical optimisation, 2010, 1(4): 330-343.
[4] 王凡, 贺兴时, 王燕, 等. 基于CS算法的Markov模型及收敛性分析[J]. 计算机工程, 2012, 38(11): 180-182, 185
WANG Fan, HE Xingshi, WANG Yan, et al. Markov model and convergence analysis based on cuckoo search algorithm[J]. Computer engineering, 2012, 38(11): 180-182, 185
[5] PATWARDHAN A P, PATIDAR R, GEORGE N V. On a cuckoo search optimization approach towards feedback system identification[J]. Digital signal processing, 2014, 32: 156-163.
[6] GANDOMI A H, YANG Xinshe, ALAVI A H. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems[J]. Engineering with computers, 2013, 29(1): 17-35.
[7] DHIVYA M, SUNDARAMBAL M. Cuckoo search for data gathering in wireless sensor networks[J]. International journal of mobile communications, 2011, 9(6): 642-656.
[8] YANG Xinshe, KARAMANOGLU M. Swarm intelligence and bio-inspired computation: theory and applications[M]. London: Elsevier, 2013: 3-23.
[9] ROY S, CHAUDHURI S S. Cuckoo search algorithm using lèvy flight: a review[J]. International journal of modern education and computer science, 2013, 5(12): 10-15.
[10] WINFREE R. Cuckoos, cowbirds and the persistence of brood parasitism[J]. Trends in ecology & evolution, 1999, 14(9): 338-343.
[11] PAVLYUKEVICH I. Lévy flights, non-local search and simulated annealing[J]. Journal of computational physics, 2007, 226(2): 1830-1844.
[12] VISWANATHAN G M, AFANASYEV V, BULDYREV S V, et al. Lévy flight search patterns of wandering albatrosses[J]. Nature, 1996, 381(6581): 413-415.
[13] 王庆喜, 郭晓波. 基于莱维飞行的粒子群优化算法[J]. 计算机应用研究, 2016, 33(9): 2588-2591
WANG Qingxi, GUO Xiaobo. Particle swarm optimization algorithm based on Levy flight[J]. Application research of computers, 2016, 33(9): 2588-2591
[14] YANG Xinshe. Nature-inspired metaheuristic algorithms[M]. 2nd ed. Frome, UK: Luniver Press, 2010: 11-16.
[15] 秦强, 冯蕴雯, 薛小锋. 改进布谷鸟算法在结构可靠性分析中的应用[J]. 系统工程与电子技术, 2015, 37(4): 979-984
QIN Qiang, FENG Yunwen, XUE Xiaofeng. Improved cuckoo search algorithm for structural reliability analysis[J]. Systems engineering and electronics, 2015, 37(4): 979-984
[16] 张永韡, 汪镭, 吴启迪. 动态适应布谷鸟搜索算法[J]. 控制与决策, 2014, 29(4): 617-622
ZHANG Yongwei, WANG Lei, WU Qidi. Dynamic adaptation cuckoo search algorithm[J]. Control and decision, 2014, 29(4): 617-622
[17] 明波, 黄强, 王义民, 等. 基于改进布谷鸟算法的梯级水库优化调度研究[J]. 水利学报, 2015, 46(3): 341-349
MING Bo, HUANG Qiang, WANG Yimin, et al. Cascade reservoir operation optimization based-on improved cuckoo search[J]. Journal of hydraulic engineering, 2015, 46(3): 341-349
[18] WALIA G S, KAPOOR R. Intelligent video target tracking using an evolutionary particle filter based upon improved cuckoo search[J]. Expert systems with applications, 2014, 41(14): 6315-6326.
[19] JABALLAH A, MEDDEB A. A new variant of cuckoo search algorithm with self adaptive parameters to solve complex RFID network planning problem[J]. Wireless networks, 2019, 25(4): 1585-1604.
[20] WALTON S, HASSAN O, MORGAN K, et al. Modified cuckoo search: a new gradient free optimisation algorithm[J]. Chaos, solitons & fractals, 2011, 44(9): 710-718.
[21] NAIK M K, PANDA R. A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition[J]. Applied soft computing, 2016, 38: 661-675.
[22] 陈亮, 卢厚清. 求解连续函数优化的自适应布谷鸟搜索算法[J]. 解放军理工大学学报(自然科学版), 2015, 16(3): 299-304
CHEN Liang, LU Houqing. Self-adaptive cuckoo search algorithm for continuous function optimization problems[J]. Journal of PLA University of Science and Technology (natural science edition), 2015, 16(3): 299-304
[23] VALIAN E, MOHANNA S, TAVAKOLI S. Improved cuckoo search algorithm for feedforward neural network training[J]. International journal of artificial intelligence & applications, 2011, 2(3): 36-43.
[24] WANG Gaige, DEB S, GANDOMI A H, et al. Chaotic cuckoo search[J]. Soft computing, 2016, 20(9): 3349-3362.
[25] DHAL K G, QURAISHI I, DAS S. Performance analysis of chaotic Lévy bat algorithm and chaotic cuckoo search algorithm for gray level image enhancement[M]//MANDAL J K, SATAPATHY S C, SANYAL M K, et al. Information Systems Design and Intelligent Applications. New Delhi: Springer, 2015: 233-244.
[26] 胡梦林, 万幼川, 王明威, 等. 基于混沌杜鹃搜索算法的高光谱影像波段选择[J]. 微电子学与计算机, 2018, 35(4): 124-129
HU Menglin, WAN Youchuan, WANG Mingwei, et al. Band selection based on chaotic cuckoo search algorithm for hyperspectral image[J]. Microelectronics & computer, 2018, 35(4): 124-129
[27] WANG Fan, LUO Ligui, HE Xingshi, et al. Hybrid optimization algorithm of PSO and cuckoo search[C]//Proceedings of 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce. Dengleng, China, 2011: 1172-1175.
[28] 秦强, 冯蕴雯, 薛小锋. 全局最优导向模糊布谷鸟搜索算法及应用[J]. 北京航空航天大学学报, 2016, 42(1): 94-100
QIN Qiang, FENG Yunwen, XUE Xiaofeng. Global-best guided fuzzy cuckoo search algorithm and its application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 94-100
[29] ZHOU Jiajun, YAO Xifan. A hybrid approach combining modified artificial bee colony and cuckoo search algorithms for multi-objective cloud manufacturing service composition[J]. International journal of production research, 2017, 55(16): 4765-4784.
[30] 王李进, 钟一文, 尹义龙. 带外部存档的正交交叉布谷鸟搜索算法[J]. 计算机研究与发展, 2015, 52(11): 2496-2507
WANG Lijin, ZHONG Yiwen, YIN Yilong. Orthogonal crossover cuckoo search algorithm with external archive[J]. Journal of computer research and development, 2015, 52(11): 2496-2507
[31] 贾云璐, 刘胜, 宋颖慧. 基于种群特征反馈的布谷鸟搜索算法[J]. 控制与决策, 2016, 31(6): 969-975
JIA Yunlu, LIU Sheng, SONG Yinghui. Cuckoo search algorithm based on swarm feature feedback[J]. Control and decision, 2016, 31(6): 969-975
[32] 胡欣欣, 尹义龙. 求解连续函数优化问题的合作协同进化布谷鸟搜索算法[J]. 模式识别与人工智能, 2013, 26(11): 1041-1049
HU Xinxin, YIN Yilong. Cooperative co-evolutionary cuckoo search algorithm for continuous function optimization problems[J]. Pattern recognition and artificial intelligence, 2013, 26(11): 1041-1049
[33] 张子成, 韩伟, 毛波. 基于模拟退火的自适应离散型布谷鸟算法求解旅行商问题[J]. 电子学报, 2018, 46(8): 1849-1857
ZHANG Zicheng, HAN Wei, MAO Bo. Adaptive discrete cuckoo algorithm based on simulated annealing for solving TSP[J]. Acta electronica sinica, 2018, 46(8): 1849-1857
[34] 傅文渊. 均衡单进化布谷鸟算法[J]. 电子学报, 2019, 47(2): 282-288
FU Wenyuan. Equilibrium single evolution based cuckoo search algorithm[J]. Acta electronica sinica, 2019, 47(2): 282-288
[35] 黄辰, 费继友, 王丽颖, 等. 基于多策略差分布谷鸟算法的粒子滤波方法[J]. 农业机械学报, 2018, 49(4): 265-272
HUANG Chen, FEI Jiyou, WANG Liying, et al. Particle filter method based on multi-strategy difference cuckoo search algorithm[J]. Transactions of the Chinese society for agricultural machinery, 2018, 49(4): 265-272
[36] 孙海文, 谢晓方, 孙涛, 等. 改进型布谷鸟搜索算法的防空火力优化分配模型求解[J]. 兵工学报, 2019, 40(1): 189-197
SUN Haiwen, XIE Xiaofang, SUN Tao, et al. Improved cuckoo search algorithm for solving antiaircraft weapon-target optimal assignment model[J]. Acta armamentarii, 2019, 40(1): 189-197
[37] LI Xiangtao, WANG Jianan, YIN Minghao. Enhancing the performance of cuckoo search algorithm using orthogonal learning method[J]. Neural computing and applications, 2014, 24(6): 1233-1247.
[38] 王李进, 尹义龙, 钟一文. 逐维改进的布谷鸟搜索算法[J]. 软件学报, 2013, 24(11): 2687-2698
WANG Lijin, YIN Yilong, ZHONG Yiwen. Cuckoo search algorithm with dimension by dimension improvement[J]. Journal of software, 2013, 24(11): 2687-2698
[39] 马卫, 孙正兴. 采用搜索趋化策略的布谷鸟全局优化算法[J]. 电子学报, 2015, 43(12): 2429-2439
MA Wei, SUN Zhengxing. A global cuckoo optimization algorithm using coarse-to-fine search[J]. Acta electronica sinica, 2015, 43(12): 2429-2439
[40] 陶涛, 张俊, 信昆仑, 等. 基于布谷鸟算法的给水管网调压阀优化设计[J]. 同济大学学报(自然科学版), 2016, 44(4): 600-604, 631
TAO Tao, ZHANG Jun, XIN Kunlun, et al. Optimal valve control in water distribution systems based on cuckoo search[J]. Journal of Tongji University (natural science edition), 2016, 44(4): 600-604, 631
[41] HAMZI A, BOUFALA S, MEZIANE R, et al. Cuckoo search optimization to shunt capacitor allocation in Algerian radial distribution power system[C]//Proceedings of 2015 3rd International Renewable and Sustainable Energy Conference. Marrakech, Morocco, 2015: 1-8.
[42] PIECHOCKI J, AMBROZIAK D, PALKOWSKI A, et al. Use of modified cuckoo search algorithm in the design process of integrated power systems for modern and energy self-sufficient farms[J]. Applied energy, 2014, 114: 901-908.
[43] ELAZIM S M A, ALI E S. Optimal power system stabilizers design via cuckoo search algorithm[J]. International journal of electrical power & energy systems, 2016, 75: 99-107.
[44] 李东生, 高杨, 雍爱霞. 基于改进离散布谷鸟算法的干扰资源分配研究[J]. 电子与信息学报, 2016, 38(4): 899-905
LI Dongsheng, GAO Yang, YONG Aixia. Jamming resource allocation via improved discrete cuckoo search algorithm[J]. Journal of electronics & information technology, 2016, 38(4): 899-905
[45] VALIAN E, VALIAN E. A cuckoo search algorithm by Levy flights for solving reliability redundancy allocation problems[J]. Engineering optimization, 2013, 45(11): 1273-1286.
[46] 董朝阳, 路遥, 江未来, 等. 基于布谷鸟搜索算法的一类变体飞行器容错控制[J]. 航空学报, 2015, 36(6): 2047-2054
DONG Chaoyang, LU Yao, JIANG Weilai, et al. Fault tolerant control based on cuckoo search algorithm for a class of morphing aircraft[J]. Acta aeronautica et astronautica sinica, 2015, 36(6): 2047-2054
[47] HANOUN S, NAHAVANDI S, CREIGHTON D, et al. Solving a multiobjective job shop scheduling problem using pareto archived cuckoo search[C]//Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation. Krakow, Poland, 2012: 1-8.
[48] WANG Zhe, LI Yanzhong. Irreversibility analysis for optimization design of plate fin heat exchangers using a multi-objective cuckoo search algorithm[J]. Energy conversion and management, 2015, 101: 126-135.
[49] 杨辉华, 谢谱模, 张晓凤, 等. 求解多目标优化问题的改进布谷鸟搜索算法[J]. 浙江大学学报(工学版), 2015, 49(8): 1600-1608
YANG Huihua, XIE Pumo, ZHANG Xiaofeng, et al. Improved cuckoo search algorithm for multi-objective optimization problems[J]. Journal of Zhejiang University (engineering science edition), 2015, 49(8): 1600-1608
[50] AGRAWAL S, PANDA R, BHUYAN S, et al. Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm[J]. Swarm and evolutionary computation, 2013, 11: 16-30.
[51] 叶志伟, 赵伟, 王明威, 等. 一种基于杜鹃搜索算法的图像自适应增强方法[J]. 测绘科学技术学报, 2016, 33(1): 38-42
YE Zhiwei, ZHAO Wei, WANG Mingwei, et al. An adaptive image enhancement approach based on cuckoo search algorithm[J]. Journal of geomatics science and technology, 2016, 33(1): 38-42
[52] 马英辉, 吴一全. 利用混沌布谷鸟优化的二维Renyi灰度熵图像阈值选取[J]. 智能系统学报, 2018, 13(1): 152-158
MANG Yinghui, WU Yiquan. Two-dimensional Renyi-gray-entropy image threshold selection based on chaotic cuckoo search optimization[J]. CAAI transactions on intelligent systems, 2018, 13(1): 152-158
[53] 张焕龙, 张秀娇, 贺振东, 等. 基于布谷鸟搜索的图像匹配方法研究[J]. 郑州大学学报(理学版), 2017, 49(4): 51-56
ZHANG Huanlong, ZHANG Xiujiao, HE Zhendong, et al. The study on image matching method based on cuckoo search[J]. Journal of Zhengzhou University (natural science edition), 2017, 49(4): 51-56
[54] LI Taifeng, LI Peigen, LI Wenlong, et al. Cuckoo search-based range image registration for free-form surface inspection[C]//Proceedings of 2015 IEEE 19th International Conference on Computer Supported Cooperative Work in Design. Calabria, Italy, 2015: 505-510.
[55] DANIEL E, ANITHA J, GNANARAJ J. Optimum laplacian wavelet mask based medical image using hybrid cuckoo search-grey wolf optimization algorithm[J]. Knowledge-based systems, 2017, 131: 58-69.
[56] DEY N, SAMANTA S, YANG Xinshe, et al. Optimisation of scaling factors in electrocardiogram signal watermarking using cuckoo search[J]. International journal of bio-inspired computation, 2013, 5(5): 315-326.
[57] 赵莉. 基于改进布谷鸟搜索算法的云计算资源调度[J]. 南京理工大学学报, 2016, 40(4): 472-476
ZHAO Li. Cloud computing resource scheduling based on modified cuckoo search algorithm[J]. Journal of Nanjing University of Science and Technology, 2016, 40(4): 472-476
[58] 战非, 张少茹. 适应云计算的混沌布谷鸟算法应用优化研究[J]. 控制工程, 2017, 24(7): 1486-1492
ZHAN Fei, ZHANG Shaoru. Research on applications of chaos cuckoo search algorithm suitable for cloud computing[J]. Control engineering of China, 2017, 24(7): 1486-1492
[59] GOBAL J, NARAYAN S. Hybrid decision tree fuzzy rule based classifier for heart disease prediction using chaotic cuckoo search algorithm[J]. Journal of engineering and applied sciences, 2017, 12(23): 7358-7366.
[60] 刘志刚, 许少华, 李盼池, 等. 基于量子衍生布谷鸟的脊波过程神经网络及TOC预测[J]. 控制与决策, 2017, 32(6): 1115-1120
LIU Zhigang, XU Shaohua, LI Panchi, et al. Ridgelet process neural networks based on quantum-inspired cuckoo search and application for TOC prediction[J]. Control and decision, 2017, 32(6): 1115-1120
[61] 朱笑花, 王宁. cRNA布谷鸟搜索算法的桥式吊车PID控制[J]. 浙江大学学报(工学版), 2017, 51(7): 1397-1404
ZHU Xiaohua, WANG Ning. Cuckoo search algorithm with RNA crossover operation for PID control of overhead cranes[J]. Journal of Zhejiang University (engineering science edition), 2017, 51(7): 1397-1404
[62] TIWARI V. Face recognition based on cuckoo search algorithm[J]. Indian journal of computer science and engineering, 2012, 3(3): 401-405.

相似文献/References:

[1]康 琦,汪 镭,刘小莉,等.基于群体智能框架理念的遗传算法总体模式描述[J].智能系统学报,2007,2(05):42.
 KANG Qi,WANG Lei,LIU Xiao-li,et al.General mode description genetic algorithms based on a framework of swarm intelligence[J].CAAI Transactions on Intelligent Systems,2007,2(3):42.
[2]杨东升,康 琦,刘 波,等.面向生产系统的残次品主次成因的群体智能分析[J].智能系统学报,2009,4(06):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
 YANG Dong-sheng,KANG Qi,LIU Bo,et al.Swarm intelligence analysis of primary and secondary causes of defective products for manufacturing system[J].CAAI Transactions on Intelligent Systems,2009,4(3):502.[doi:10.3969/j.issn.1673-4785.2009.06.006]
[3]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(01):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10(3):1.[doi:10.3969/j.issn.1673-4785.201403072]
[4]周欢,李煜.具有动态惯性权重的布谷鸟搜索算法[J].智能系统学报,2015,10(04):645.[doi:10.3969/j.issn.1673-4785.201409042]
 ZHOU Huan,LI Yu.Cuckoo search algorithm with dynamic inertia weight[J].CAAI Transactions on Intelligent Systems,2015,10(3):645.[doi:10.3969/j.issn.1673-4785.201409042]
[5]陈杰,沈艳霞,陆欣.基于信息反馈和改进适应度评价的人工蜂群算法[J].智能系统学报,2016,11(2):172.[doi:10.11992/tis.201506024]
 CHEN Jie,SHEN Yanxia,LU Xin.Artificial bee colony algorithm based on information feedback and an improved fitness value evaluation[J].CAAI Transactions on Intelligent Systems,2016,11(3):172.[doi:10.11992/tis.201506024]
[6]秦全德,程适,李丽,等.人工蜂群算法研究综述[J].智能系统学报,2014,9(02):127.[doi:10.3969/j.issn.1673-4785.201309064]
 QIN Quande,CHENG Shi,LI Li,et al.Artificial bee colony algorithm: a survey[J].CAAI Transactions on Intelligent Systems,2014,9(3):127.[doi:10.3969/j.issn.1673-4785.201309064]
[7]谭营,郑少秋.烟花算法研究进展[J].智能系统学报,2014,9(05):515.[doi:10.3969/j.issn.1673-4785.201409010]
 TAN Ying,ZHENG Shaoqiu.Recent advances in fireworks algorithm[J].CAAI Transactions on Intelligent Systems,2014,9(3):515.[doi:10.3969/j.issn.1673-4785.201409010]
[8]顾大强,郑文钢.多移动机器人协同搬运技术综述[J].智能系统学报,2019,14(01):20.[doi:10.11992/tis.201801038]
 GU Daqiang,ZHENG Wengang.Technologies for cooperative transportation by multiple mobile robots[J].CAAI Transactions on Intelligent Systems,2019,14(3):20.[doi:10.11992/tis.201801038]
[9]李景灿,丁世飞.基于人工鱼群算法的孪生支持向量机[J].智能系统学报,2019,14(06):1121.[doi:10.11992/tis.201905025]
 LI Jingcan,DING Shifei.Twin support vector machine based on artificial fish swarm algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(3):1121.[doi:10.11992/tis.201905025]
[10]邱华鑫,段海滨,范彦铭,等.鸽群交互模式切换模型及其同步性分析[J].智能系统学报,2020,15(2):334.[doi:10.11992/tis.201904052]
 QIU Huaxin,DUAN Haibin,FAN Yanming,et al.Pigeon flock interaction pattern switching model and its synchronization analysis[J].CAAI Transactions on Intelligent Systems,2020,15(3):334.[doi:10.11992/tis.201904052]

备注/Memo

备注/Memo:
收稿日期:2018-11-06。
基金项目:国家自然科学基金项目(61573183);城市空间信息工程北京市重点实验室开放基金项目(2014203);北大方正集团有限公司数字出版技术国家重点实验室开放课题项目
作者简介:吴一全,教授,博士生导师,主要研究方向为图像处理与分析、目标检测与识别、智能信息处理。发表学术论文350余篇;周建伟,硕士研究生,主要研究方向为图像处理
通讯作者:吴一全.E-mail:nuaaimage@163.com
更新日期/Last Update: 1900-01-01