[1]王润芳,陈增强,刘忠信.融合朴素贝叶斯方法的复杂网络链路预测[J].智能系统学报,2019,14(01):99-107.[doi:10.11992/tis.201810025]
 WANG Runfang,CHEN Zengqiang,LIU Zhongxin.Link prediction in complex networks with syncretic naive Bayes methods[J].CAAI Transactions on Intelligent Systems,2019,14(01):99-107.[doi:10.11992/tis.201810025]
点击复制

融合朴素贝叶斯方法的复杂网络链路预测(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第14卷
期数:
2019年01期
页码:
99-107
栏目:
出版日期:
2019-01-05

文章信息/Info

Title:
Link prediction in complex networks with syncretic naive Bayes methods
作者:
王润芳1 陈增强12 刘忠信12
1. 南开大学 人工智能学院, 天津 300350;
2. 天津市智能机器人重点实验室, 天津 300350
Author(s):
WANG Runfang1 CHEN Zengqiang12 LIU Zhongxin12
1. College of Artificial Intelligence, Nankai University, Tianjin 300350, China;
2. Key Laboratory of Intelligent Robotics of Tianjin, Tianjin 300350, China
关键词:
复杂网络融合朴素贝叶斯模型局部朴素贝叶斯模型贝叶斯模型链路预测共同邻居节点度网络重构
Keywords:
complex networksyncretic naive Bayes modellocal naive Bayes modelBayes modellink predictioncommon neighborsthe degree of nodenetwork reconstruction
分类号:
TP391
DOI:
10.11992/tis.201810025
摘要:
近来复杂网络成为了众多学者的研究热点。但真实网络中的连边信息并不完整,不利于网络的分析研究,链路预测可以挖掘网络中的缺失连边,为网络重构提供基本依据。本文认为网络中链接的产生不仅受外部因素——共同邻居的影响,还受其自身因素的影响。其中,共同邻居的影响可以通过文献中的局部朴素贝叶斯(LNB)模型量化,节点的影响则根据其自身的度量化。本文将两者综合考虑,提出了融合朴素贝叶斯(SNB)模型,然后用共同邻居(CN)、Adamic-Adar(AA)和资源分配(RA)指标进行推广。在美国航空网(USAir)上的实验结果表明,该方法的预测准确度比LNB和基准方法均有所提高,从而证明了该方法的有效性。
Abstract:
Recently, complex networks have become a research hotspot. However, edge information in the real network is incomplete, which is not conducive to the analysis and research of the network. Link prediction can provide a fundamental basis for network reconstruction by digging out the missing edges in the network. This paper demonstrates that the generation of links in the network is not only influenced by external factors (common neighbors) but also by its own factors. Among them, the influence of common neighbors can be quantified via the local naive Bayes (LNB) model in the literature, whereas the influence of nodes can be quantified depending on their degree. Therefore, a syncretic naive Bayes (SNB) model is proposed based on comprehensive consideration of the influence of the two abovementioned aspects. The model is then extended to common neighbors, Adamic-Adar, and Resource Allocation methods. Finally, the experimental results on USAir show that the prediction accuracy of the method is higher than that of LNB and the benchmark method, which proves the effectiveness of the SNB model.

参考文献/References:

[1] LIU Yangyang, ZHAO Chengli, WANG Xiaojie, et al. The degree-related clustering coefficient and its application to link prediction[J]. Physica A:statistical mechanics and its applications, 2016, 454:24-33.
[2] 何大韧, 刘宗华, 汪秉宏. 复杂系统与复杂网络[M]. 北京:高等教育出版社, 2009.
[3] 刘宏鲲, 吕琳媛, 周涛. 利用链路预测推断网络演化机制[J]. 中国科学, 2011, 41(7):816-823 LIU Hongkun, LÜ Linyuan, ZHOU Tao. Infer network evolution mechanism by using link prediction[J]. Chinese science, 2011, 41(7):816-823
[4] 张学龙, 王军进. 链路预测下能源供应链网络合作演化机制研究[J]. 智能系统学报, 2017, 12(2):221-228 ZHANG Xuelong, WANG Junjin. On the evolution cooperation mechanism of energy supply chain networks under link prediction[J]. CAAI transactions on Intelligent Systems, 2017, 12(2):221-228
[5] ZHOU Tao, REN Jie, MEDO M, et al. Bipartite network projection and personal recommendation[J]. Physical review e, 2007, 76(4):046115.
[6] LÜ Linyuan, ZHOU Tao. Link prediction in complex networks:a survey[J]. Physica A:statistical mechanics and its applications, 2011, 390(6):1150-1170.
[7] LIBEN-NOWELL D, KLEINBERG J. The link-prediction problem for social networks[J]. Journal of the American society for information science and technology, 2007, 58(7):1019-1031.
[8] ADAMIC L A, ADAR E. Friends and neighbors on the Web[J]. Social networks, 2003, 25(3):211-230.
[9] ZHOU Tao, LÜ Linyuan, ZHANG Yicheng. Predicting missing links via local information[J]. The European physical journal B, 2009, 71(4):623-630.
[10] LIU Weiping, LÜ Linyuan. Link prediction based on local random walk[J]. EPL (europhysics letters), 2010, 89(5):58007.
[11] LÜ Linyuan, ZHOU Tao. Link prediction in weighted networks:the role of weak ties[J]. EPL (europhysics letters), 2010, 89(1):18001.
[12] LIU Zhen, ZHANG Qianming, LÜ Linyuan, et al. Link prediction in complex networks:a local naïve Bayes model[J]. EPL (europhysics letters), 2011, 96(4):48007.
[13] VALVERDE-REBAZA J C, DE ANDRADE LOPES A. Link prediction in online social networks using group information[C]//Proceedings of the 14th International Conference on Computational Science and Its Applications. Guimarães, Portugal, 2014:31-45.
[14] VALVERDE-REBAZA J, VALEJO A, BERTON L, et al. A naïve Bayes model based on overlapping groups for link prediction in online social networks[C]//Proceedings of the 30th Annual ACM Symposium on Applied Computing. Salamanca, Spain, 2015:1136-1141.
[15] WU Jiehua. A generalized tree augmented naive Bayes link prediction model[J]. Journal of computational science, 2018, 27:206-217.
[16] 闫玲玲, 陈增强, 张青. 基于度和聚类系数的中国航空网络重要性节点分析[J]. 智能系统学报, 2016, 11(5):586-593 YAN Lingling, CHEN Zengqiang, ZHANG Qing. Analysis of key nodes in China’s aviation network based on the degree centrality indicator and clustering coefficient[J]. CAAI transactions on intelligent systems, 2016, 11(5):586-593
[17] PUJARI M, KANAWATI R. Link prediction in complex networks by supervised rank aggregation[C]//Proceedings of the 2012 IEEE 24th International Conference on Tools with Artificial Intelligence. Athens, Greece, 2012:782-789.
[18] LI Yun, NIU Kai, TIAN Baoyu. Link prediction in Sina Microblog using comprehensive features and improved SVM algorithm[C]//Proceedings of the 2014 IEEE 3rd International Conference on Cloud Computing and Intelligence Systems. Shenzhen, China, 2014:18-22.
[19] YUAN Weiwei, HE Kangya, GUAN Donghai, et al. Graph kernel based link prediction for signed social networks[J]. Information fusion, 2019, 46:1-10.
[20] 孙诚, 王志海. 社会网络中基于神经网络的链路预测方法[J]. 数学建模及其应用, 2017, 6(4):10-17 SUN Cheng, WANG Zhihai. The link prediction algorithms based on neural networks in social networks[J]. Mathematical modeling and its applications, 2017, 6(4):10-17
[21] LI Jichao, ZHAO Danling, GE Bingfeng, et al. A link prediction method for heterogeneous networks based on BP neural network[J]. Physica A:statistical mechanics and its applications, 2018, 495:1-17.
[22] XIAO Yunpeng, LI Xixi, WANG Haohan, et al. 3-HBP:a three-level hidden Bayesian link prediction model in social networks[J]. IEEE transactions on computational social systems, 2018, 5(2):430-443.
[23] 李勇军, 尹超, 于会, 等. 基于最大熵模型的微博传播网络中的链路预测[J]. 物理学报, 2016, 65(2):31-41 LI Yongjun, YIN Chao, YU Hui, et al. Link prediction in microblog retweet network based on maximum entropy model[J]. Acta physica sinica, 2016, 65(2):31-41
[24] WANG Yisen, LIU Fangbing, XIA Shutao, et al. Link sign prediction by variational Bayesian probabilistic matrix factorization with student-t prior[J]. Information sciences, 2017, 405:175-189.

相似文献/References:

[1]王 龙,伏 锋,陈小杰,等.复杂网络上的群体决策[J].智能系统学报,2008,3(02):95.
 WANG Long,FU Feng,CHEN Xiao-jie,et al.Collective decision-making over complex networks[J].CAAI Transactions on Intelligent Systems,2008,3(01):95.
[2]夏承遗,刘忠信,陈增强,等.复杂网络上的传播动力学及其新进展[J].智能系统学报,2009,4(05):392.[doi:10.3969/j.issn.1673-4785.2009.05.002]
 XIA Cheng-yi,LIU Zhong-xin,CHEN Zeng-qiang,et al.Transmission dynamics in complex networks[J].CAAI Transactions on Intelligent Systems,2009,4(01):392.[doi:10.3969/j.issn.1673-4785.2009.05.002]
[3]李伟,杨晓峰,张重阳,等.复杂网络社团的投影聚类划分[J].智能系统学报,2011,6(01):57.
 LI Wei,YANG Xiaofeng,ZHANG Chongyang,et al.A clustering method for community detection on complex networks[J].CAAI Transactions on Intelligent Systems,2011,6(01):57.
[4]孙世温,夏承遗,王莉.基于复杂网络的软件结构度量方法综述[J].智能系统学报,2011,6(03):208.
 SUN Shiwen,XIA Chengyi,WANG Li.Survey of the measurement of software structures based on complex networks[J].CAAI Transactions on Intelligent Systems,2011,6(01):208.
[5]赵敬,夏承遗,孙世温,等.复杂网络上同时考虑感染延迟和非均匀传播的SIR模型[J].智能系统学报,2013,8(02):128.[doi:10.3969/j.issn.1673-4785.201210027]
 ZHAO Jing,XIA Chengyi,SUN Shiwen,et al.A novel SIR model with infection delay and nonuniform transmission in complex networks[J].CAAI Transactions on Intelligent Systems,2013,8(01):128.[doi:10.3969/j.issn.1673-4785.201210027]
[6]仇建平,陈立潮,潘理虎.牵制控制下复杂网络的同步性研究[J].智能系统学报,2014,9(06):734.[doi:10.3969/j.issn.1673-4785.201311014]
 QIU Jianping,CHEN Lichao,PAN Lihu.Synchronization in complex networks via pinning control[J].CAAI Transactions on Intelligent Systems,2014,9(01):734.[doi:10.3969/j.issn.1673-4785.201311014]
[7]刘富,姜奕含,邹青宇.复杂网络结构比对算法研究进展[J].智能系统学报,2015,10(04):508.[doi:10.3969/j.issn.1673-4785.201408006]
 LIU Fu,JIANG Yihan,ZOU Qingyu.Advances in algorithms for construction alignment of complex networks research[J].CAAI Transactions on Intelligent Systems,2015,10(01):508.[doi:10.3969/j.issn.1673-4785.201408006]
[8]晁永翠,纪志坚,王耀威,等.复杂网络在路形拓扑结构下可控的充要条件[J].智能系统学报,2015,10(04):577.[doi:10.3969/j.issn.1673-4785.201411031]
 CHAO Yongcui,JI Zhijian,WANG Yaowei,et al.Necessary and sufficient conditions for the controllability of complex networks with path topology[J].CAAI Transactions on Intelligent Systems,2015,10(01):577.[doi:10.3969/j.issn.1673-4785.201411031]
[9]王景丽,许立波,庞超逸.复杂网络中的在线社交网络演化模型[J].智能系统学报,2015,10(6):949.[doi:10.11992/tis.201507042]
 WANG Jingli,XU Libo,PANG Chaoyi.Evolution model of online social networks based on complex networks[J].CAAI Transactions on Intelligent Systems,2015,10(01):949.[doi:10.11992/tis.201507042]
[10]郑文萍,张浩杰,王杰.基于稠密子图的社区发现算法[J].智能系统学报,2016,11(3):426.[doi:10.11992/tis.201603045]
 ZHENG Wenping,ZHANG Haojie,WANG Jie.Community detection algorithm based on dense subgraphs[J].CAAI Transactions on Intelligent Systems,2016,11(01):426.[doi:10.11992/tis.201603045]

备注/Memo

备注/Memo:
收稿日期:2018-10-23。
基金项目:国家自然科学基金项目(61573199,61573197).天津市自然科学基金项目(14JCYBJC18700).
作者简介:王润芳,女,1994年生,硕士研究生,主要研究方向为智能系统预测与控制;陈增强,男,1964年生,教授,博士生导师,中国系统仿真学会理事,中国人工智能学会智能空天系统专业委员会副主任,控制理论专业委员会委员、天津市人民政府学科评议组控制学科组成员、天津市自动化学会理事,担任多个期刊的编委,主要研究方向为智能预测控制、复杂动态网络与混沌系统。主持完成国家863项目和国家自然科学基金项目6项,获得省部级科技进步奖4次。发表学术论文300余篇;刘忠信,男,1975年生,教授,博士生导师,中国人工智能学会智能空天系统专业委员会委员、中国智能物联系统建模与仿真专业委员会委员、天津市系统工程学会理事,主要研究方向为群体智能与复杂动态网络、计算机控制。发表学术论文180余篇。
通讯作者:陈增强.E-mail:chenzq@nankai.edu.cn
更新日期/Last Update: 1900-01-01