[1]赵敬,夏承遗,孙世温,等.复杂网络上同时考虑感染延迟和非均匀传播的SIR模型[J].智能系统学报,2013,(02):128-134.[doi:10.3969/j.issn.1673-4785.201210027]
 ZHAO Jing,XIA Chengyi,SUN Shiwen,et al.A novel SIR model with infection delay and nonuniform transmission in complex networks[J].CAAI Transactions on Intelligent Systems,2013,(02):128-134.[doi:10.3969/j.issn.1673-4785.201210027]
点击复制

复杂网络上同时考虑感染延迟和非均匀传播的SIR模型(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2013年02期
页码:
128-134
栏目:
出版日期:
2013-04-25

文章信息/Info

Title:
A novel SIR model with infection delay and nonuniform transmission in complex networks
文章编号:
1673-4785(2013)02-0128-07
作者:
赵敬12夏承遗12孙世温12王莉12
1. 天津理工大学 天津市智能计算与软件新技术重点实验室,天津 300384;
2. 天津理工大学 省部共建教育部计算机视觉与系统重点实验室,天津 300384
Author(s):
ZHAO Jing12 XIA Chengyi12 SUN Shiwen12 WANG Li12
1. Tianjin Key Laboratory of Intelligence Computing and Novel Software Technology;
2. Key Laboratory of Computer Vision and Systems (Ministry of Education), Tianjin University of Technology, Tianjin 300384, China
关键词:
感染延迟非均匀传播临界值复杂网络SIR模型
Keywords:
infection delay nonuniform transmission critical threshold complex networks SIR model
分类号:
TP18;O231.5
DOI:
10.3969/j.issn.1673-4785.201210027
文献标志码:
A
摘要:
为了能更有效地分析和理解传染性疾病的传播,提出了一个新颖的SIR模型,在这个传播模型里同时考虑了影响疾病传播行为的2个因素:感染延迟和非均匀传播.基于平均场理论和大量的数值仿真,给出了疾病传播临界值的解析公式,并发现感染延迟和非均匀传播对临界值影响截然不同:感染延迟能够在很大程度上减小传播阈值,促进疾病在人群中的传播;而非均匀传播能够增大传播临界值,阻碍疾病的大规模传播.当前的研究结果有助于深入理解真实复杂系统中的疾病传播行为,充分考虑感染延迟、传播机制和实际人群的拓扑结构等因素在疾病传播中的作用,从而为制定有效的传染病预防和控制措施提供理论依据.
Abstract:
In order to analyze and understand the spreading behavior of infectious diseases, the authors propose to examine susceptible-infected-removed (SIR) model. The researchers simultaneously introduce into the epidemic model the two factors: influencing disease spreading behavior, and infection delay and nonuniform transmission, utilizing the SIR model. Based on the mean-field approximation and large-scale numerical simulations, the analytical results of critical thresholds of disease spreading were derived, along with the infection delay and the nonuniform transmission having a distinct impact on the critical threshold. The infection delay can greatly decrease the critical threshold and facilitate the spread of epidemics, while the nonuniform transmission can augment the critical threshold and hinder the epidemic spreading in complex networks. Current results are conducive to further understand the epidemic spreading inside the complex real systems, as well as to fully consider the roles of infection delay, transmission factors and topological structure of population in the spreading of diseases. The results also provide a number of theoretical evidence to design more effective epidemic prevention and containment measures.

参考文献/References:

[1]DYE C,GAY N. Modeling the SARS epidemic[J]. Science, 2003, 300(5627): 1884-1885.
[2]SMALL M, WALKER D M, TSE C K. Scale free distribution of avian influenza outbreaks[J]. Physical Review Letters, 2007, 99(18): 188702. 
[3]FRASER C, DONNELLY C A, CAUCHEMEZ S, et al. Pandemic potential of a strain of influenza A(H1N1): early findings[J]. Science, 2009, 324(5934): 1557-1561.
[4]KEELING M J, EAMES K T D. Networks and epidemic models[J]. Journal of the Royal Society Interface, 2005, 2 (4): 295-307.
[5]MAY R M. Network structure and the biology of populations[J]. Trends Ecol Evol, 2006, 21(7): 394-399.
[6]MEYERS L A N. Contact network epidemiology: bond percolation applied to infectious disease prediction and control[J]. Amercian Mathematical Society, 2007, 44(1): 63- 86.
[7]夏承遗,刘忠信,陈增强,等. 复杂网络上的传播动力学及其新进展[J]. 智能系统学报,2009, 4(5): 392-397.
XIA Chengyi, LIU Zhongxin, CHEN Zengqiang, et al. Transmission dynamics in complex networks[J].CAAI Transactions on Intelligent Systems, 2009, 4(5): 392-397.
[8]KEPHART J O,WHITE S R. Directed-graph epidemiological models of computer viruses[C]//Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy.[S.l.], USA, 1991: 343-359.
[9]KEPHART J O, WHITE S R. Measuring and modeling computer virus prevalence[C]//Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy. New York, USA, 1993: 2-15.
[10]KERMACK W, MCKENDRICK A. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of Medicine, 1927, 115(772): 700-721.[11]WATTS D J, STRONGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393: 440-442.
[12]BARABASI A L, ALBERT R. Emergence of scaling random networks[J]. Science, 1999, 286(5439): 509-512. 
[13]BOCCALETTI S, LATORA V, MORENO Y, et al. Complex networks structure and dynamics[J]. Physics Reports, 2006, 424(4/5): 175-308.
[14]PASTOR-SATORRAS R, VESPIGNANI A. Epidemic spreading in scale-free networks[J]. Physical Review Letters, 2001, 86(14): 3200-3203.
[15]PASTOR-SATORRAS R, VESPIGNANI A. Epidemic dynamics and endemic states in complex networks[J]. Physical Review E, 2001, 63(6): 066117.
[16]PASTOR-SATORRAS R, VESPIGNANI A. Immunization of complex networks[J]. Physical Review E, 2002, 65(3): 036104.
[17]MORENO Y, PASTOR-SATORRAS R, VESPIGNANI A. Epidemic outbreaks in complex heterogeneous networks[J]. European Physical Journal B—Condensed Matter and Complex Systems, 2002, 4(26): 521-529.
[18]NEWMAN M E J. The spread of epidemic disease on network [J]. Physical Review E, 2002, 66: 016128.
[19]BOGUNA M, PASTOR-SATORRAS R, VESPIGNANI A. Absence of epidemic threshold in scale-free networks with degree correlations[J]. Physical Review Letters, 2003, 90(2): 028701.
[20]许丹,李翔,汪小帆.局域世界复杂网络中的病毒传播及其免疫控制[J]. 控制与决策, 2006, 21(7): 817-820.
 XU Dan, LI Xiang, WANG Xiaofan. On virus spreading in local-world complex networks and its immunization control[J]. Control and Decision, 2006, 21(7): 817-820.
[21]LIU Zonghua, TANG Ming, LI Baowen. Epidemic spreading by objective traveling[J]. Euro-Physics Letters, 2009, 87(1): 18005. 
[22]MELONI S, PERRA N, ARENAS A, et al. Modeling human mobility response to the large-scale spreading of infectious diseases[J]. Scientific Reports, 2011, 1: 62.
[23]GUO Weiping, LI Xiang, WANG Xiaofan. Epidemics and immunization on education distance preferred small-world networks[J]. Physica A, 2007, 380: 684-690.
[24]SHI Hongjing, DUAN Zhisheng, CHEN Guanrong. An SIS model with infective medium on complex networks[J]. Physica A, 2008, 387(8/9): 2133-2144.
[25]GOMEZ S, ARENAS A, BORGE-HOLTHOEFER J, et al. Discrete-time Markovian chain approach to contact-based disease spreading in complex networks[J]. Euro-physics Letters, 2010, 89(3): 38009.
[26]WANG Jiazeng, LIU Zengrong, XU Jianhua. Epidemic spreading on uncorrelated heterogeneous networks with non-uniform transmission[J]. Physica A, 2007, 382(3):715-721.
[27]XU Xinjian, PENG Haiou, WANG Xiaomei, et al. Epidemic spreading with time delay in complex networks[J]. Physica A, 2006, 367: 525-530.
[28]XIA Chengyi, LIU Zhongxin, CHEN Zengqiang, et al. Epidemic spreading behavior with time delay on local-world evolving networks[J]. Front Electr Electron Eng China,2008, 3(2): 129-135.

备注/Memo

备注/Memo:
收稿日期:2012-10-16.
网络出版日期:2013-04-19. 
基金项目:国家自然科学基金资助项目(60904063,61203138);天津市应用基础及前沿技术研究计划资助项目(11JCYBJC06600);天津市高等学校科技发展基金资助项目(20090813). 
通信作者:夏承遗.
E-mail:xialooking@163.com.
作者简介:
赵敬,女,1986年生,硕士研究生,主要研究方向为复杂网络上病毒传播.
夏承遗,男,1976年生,副教授,博士,主要研究方向为复杂系统与复杂网络建模分析、传播动力学、演化博弈动力学等.获天津市科技进步三等奖1项,目前主持国家自然科学基金1项,省部级科研项目1项,其他科技计划1项.发表学术论文30余篇,其中被SCI检索近20篇.
孙世温,女,1980年生,讲师,博士,主要研究方向为复杂动态网络、网络鲁棒性、软件工程.主持完成天津市高等学校科技发展基金1项、目前在研国家自然科学基金1项.发表学术论文近10篇,其中被SCI检索3篇,EI检索4篇.
更新日期/Last Update: 2013-05-26