[1]晁永翠,纪志坚,王耀威,等.复杂网络在路形拓扑结构下可控的充要条件[J].智能系统学报编辑部,2015,(04):577-582.[doi:10.3969/j.issn.1673-4785.201411031]
 CHAO Yongcui,JI Zhijian,WANG Yaowei,et al.Necessary and sufficient conditions for the controllability of complex networks with path topology[J].CAAI Transactions on Intelligent Systems,2015,(04):577-582.[doi:10.3969/j.issn.1673-4785.201411031]
点击复制

复杂网络在路形拓扑结构下可控的充要条件(/HTML)
分享到:

《智能系统学报》编辑部[ISSN:1673-4785/CN:23-1538/TP]

卷:
期数:
2015年04期
页码:
577-582
栏目:
出版日期:
2015-08-25

文章信息/Info

Title:
Necessary and sufficient conditions for the controllability of complex networks with path topology
作者:
晁永翠 纪志坚 王耀威 董洁
青岛大学 自动化工程学院, 山东 青岛 266071
Author(s):
CHAO Yongcui JI Zhijian WANG Yaowei DONG Jie
School of Automation Engineering, Qingdao University, Qingdao 266071, China
关键词:
复杂网络可控性图论拓扑线性定常系统特征值特征向量控制系统
Keywords:
complex networkscontrollabilitygraph theorytopologylinear time-invariant systemseigenvalueeigenvectorscontrol system
分类号:
TP18
DOI:
10.3969/j.issn.1673-4785.201411031
文献标志码:
A
摘要:
分析了在路形拓扑结构下复杂网络的可控性问题。把系统的邻接矩阵进行适当分解,找到邻接矩阵的各子矩阵之间在特征值和特征向量上的关系,进而基于PBH(Popov-Belevitch-Hautus)判据,得到了复杂网络在路形拓扑结构下系统可控的充要条件。特别地,当控制节点为任意的某一个或多个节点时,给出了路图可控的判别方法。此外,文中提出了不可控特征值的概念,并给出了相应特征值的具体表达形式。文中2个主要定理通过算例进行验证,算例结果与定理结论一致。
Abstract:
The controllability of complex networks is analyzed in the paper for path topology. With adjacency matrix of the system being decomposed into submatrices, the relationship between eigenvalues and eigenvectors is revealed for the partitioned submatrices. Furthermore, necessary and sufficient conditions are derived by taking advantage of the PBH(Popov-Belevitch-Hautus) criteria. In particular, a method is proposed to determine path controllability when the controlled nodes are any single or multiple nodes, as well as the concept of uncontrollable eigenvalues is presented. The expressions for uncontrollable eigenvalues are provided as well. Two theorems in this paper is verified by examples and the results of examples are in agreement with the conclusion of the theorems.

参考文献/References:

[1] KAMLAN R E. Mathematical description of linear dynamical systems[J]. Journal of the Society for Industrial and Applied Mathematics Series A: Control, 1963, 1(2): 152-192.
[2] NOTARSTEFANO G, PARLANGELI G. Controllability and observability of grid graphs via reduction and symmetries[J]. IEEE Transactions on Automatic Control, 2013, 58(7): 1719-1731.
[3] JI Zhijian, LIN Hai, YU Haisheng. Protocols design and uncontrollable topologies construction for multi-agent networks[J]. IEEE Transactions on Automatic Control, 2014, 60(3): 781-786.
[4] JI Zhijian, LIN Hai, YU Haisheng. Leaders in multi-agent controllability under consensus algorithm and tree topology[J]. Systems & Control Letters, 2012, 61(9): 918-925.
[5] JI Zhijian, WANG Zidong, LIN Hai, et al. Interconnection topologies for multi-agent coordination under leader-follower framework[J]. Automatica, 2009, 45(12): 2857-2863.
[6] RAHMANI A, JI Meng, MESBAHI M, et al. Controllability of multi-agent systems from a graph-theoretic perspective[J]. SIAM Journal on Control and Optimization, 2009, 48(1): 162-186.
[7] GUAN Yongqiang, JI Zhijian, ZHANG Lin, et al. Decentralized stabilizability of multi-agent systems under fixed and switching topologies[J]. Systems & Control Letters, 2013, 62(5): 438-446.
[8] KIM H, SHIM H, BACK J, et al. Stabilizability of a group of single integrators and its application to decentralized formation problem[C] // Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, USA, 2011: 4829-4834.
[9] SABATTINI L, SECCHI C, FANTNZZI C. Controllability and observability preservation for networked systems with time varying topologies[C] // Proceedings of the 19th World Congress on the International Federation of Automatic Control. Cape Town, South Africa, 2014: 1837-1842.
[10] MESBAHI M, EGERSTEDT M. Graph Theoretic Methods in Multiagent Networks[M]. Princeton: Princeton University Press, 2010: 117-151.
[11] SUNDARAM S, HADJICOSTIS C N. Distributed function calculation via linear iterative strategies in the presence of malicious agents[J]. IEEE Transactions on Automatic Control, 2011, 56(7): 1495-1508.
[12] PASQUALETTI F, BICCHI A, BULLO F. Consensus computation in unreliable networks: A system theoretic approach[J]. IEEE Transactions on Automatic Control, 2012, 57(1): 90-104.
[13] LI Zhongkui, REN Wei, LIU Xiangdong, et al. Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders[J]. International Journal of Robust and Nonlinear Control, 2013, 23(5): 534-547.
[14] FARINA M, FERRARI-TRECATE G, SCATTOLINI R. A moving horizon scheme for distributed state estimation[C]// Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China, 2009: 1818-1823.
[15] JI Zhijian, WANG Zidong, LIN Hai, et al. Controllability of multi-agent system with time-delay in state and switching topology[J]. International Journal of Control, 2010, 83(2): 371-386.
[16] LIU Bo, CHU Tianguang, WANG Long, et al. Controllability of leader-follower dynamic network with switching topology[J]. IEEE Transactions on Automatic Control, 2008, 53(4): 1009-1013.
[17] LIU Yangyu, SLOTINE J J, BARABÁSI A L. Controllability of complex networks[J]. Nature, 2011, 473(7346): 167-173.
[18] YUAN Zhengzhong, ZHAO Chen, DI Zengru, et al. Exact controllability of complex networks[J]. Nature Communications, 2013, 4: Aricle number 2447.
[19] PARLANGELI G, NOTARSTEFANO G. On the reachability and observability of path and cycle graphs[J]. IEEE Transactions on Automatic Control, 2012, 57(3): 743-748.
[20] PARLANGELI G, NOTARSTEFANO G. On the observability of path and cycle graphs[C] //Proceedings of the 49th IEEE Conference on Decision and Control. Atlanta, USA, 2010: 1492-1497.
[21] CHARTRAND G, ZHANG Ping. 图论导引[M]. 范益政, 等译. 北京: 人民邮电出版社, 2007: 1-17.
[22] TANNER H G. On the controllability of nearest neighbor interconnections[C] // Proceedings of the 43rd IEEE Conference on Decision and Control. Nassau, Bahamas, 2004: 2467-2472.
[23] PARLANGELI G, NOTARSTEFANO G. Graph reduction based observability conditions for network systems running average consensus algorithms[C] //Proceedings of the 18th Mediterranean Conference on Control and Automation. Marrakesh, Morocco, 2010: 689-694.

相似文献/References:

[1]王 龙,伏 锋,陈小杰,等.复杂网络上的群体决策[J].智能系统学报编辑部,2008,(02):95.
 WANG Long,FU Feng,CHEN Xiao-jie,et al.Collective decision-making over complex networks[J].CAAI Transactions on Intelligent Systems,2008,(04):95.
[2]夏承遗,刘忠信,陈增强,等.复杂网络上的传播动力学及其新进展[J].智能系统学报编辑部,2009,(05):392.[doi:10.3969/j.issn.1673-4785.2009.05.002]
 XIA Cheng-yi,LIU Zhong-xin,CHEN Zeng-qiang,et al.Transmission dynamics in complex networks[J].CAAI Transactions on Intelligent Systems,2009,(04):392.[doi:10.3969/j.issn.1673-4785.2009.05.002]
[3]李伟,杨晓峰,张重阳,等.复杂网络社团的投影聚类划分[J].智能系统学报编辑部,2011,(01):57.
 LI Wei,YANG Xiaofeng,ZHANG Chongyang,et al.A clustering method for community detection on complex networks[J].CAAI Transactions on Intelligent Systems,2011,(04):57.
[4]孙世温,夏承遗,王莉.基于复杂网络的软件结构度量方法综述[J].智能系统学报编辑部,2011,(03):208.
 SUN Shiwen,XIA Chengyi,WANG Li.Survey of the measurement of software structures based on complex networks[J].CAAI Transactions on Intelligent Systems,2011,(04):208.
[5]赵敬,夏承遗,孙世温,等.复杂网络上同时考虑感染延迟和非均匀传播的SIR模型[J].智能系统学报编辑部,2013,(02):128.[doi:10.3969/j.issn.1673-4785.201210027]
 ZHAO Jing,XIA Chengyi,SUN Shiwen,et al.A novel SIR model with infection delay and nonuniform transmission in complex networks[J].CAAI Transactions on Intelligent Systems,2013,(04):128.[doi:10.3969/j.issn.1673-4785.201210027]
[6]仇建平,陈立潮,潘理虎.牵制控制下复杂网络的同步性研究[J].智能系统学报编辑部,2014,(06):734.[doi:10.3969/j.issn.1673-4785.201311014]
 QIU Jianping,CHEN Lichao,PAN Lihu.Synchronization in complex networks via pinning control[J].CAAI Transactions on Intelligent Systems,2014,(04):734.[doi:10.3969/j.issn.1673-4785.201311014]
[7]刘富,姜奕含,邹青宇.复杂网络结构比对算法研究进展[J].智能系统学报编辑部,2015,(04):508.[doi:10.3969/j.issn.1673-4785.201408006]
 LIU Fu,JIANG Yihan,ZOU Qingyu.Advances in algorithms for construction alignment of complex networks research[J].CAAI Transactions on Intelligent Systems,2015,(04):508.[doi:10.3969/j.issn.1673-4785.201408006]
[8]王景丽,许立波,庞超逸.复杂网络中的在线社交网络演化模型[J].智能系统学报编辑部,2015,(6):949.[doi:10.11992/tis.201507042]
 WANG Jingli,XU Libo,PANG Chaoyi.Evolution model of online social networks based on complex networks[J].CAAI Transactions on Intelligent Systems,2015,(04):949.[doi:10.11992/tis.201507042]
[9]郑文萍,张浩杰,王杰.基于稠密子图的社区发现算法[J].智能系统学报编辑部,2016,(3):426.[doi:10.11992/tis.201603045]
 ZHENG Wenping,ZHANG Haojie,WANG Jie.Community detection algorithm based on dense subgraphs[J].CAAI Transactions on Intelligent Systems,2016,(04):426.[doi:10.11992/tis.201603045]
[10]闫玲玲,陈增强,张青.基于度和聚类系数的中国航空网络重要性节点分析[J].智能系统学报编辑部,2016,(5):586.[doi:10.11992/tis.201601024]
 YAN Lingling,CHEN Zengqiang,ZHANG Qing.Analysis of key nodes in China’s aviation network basedon the degree centrality indicator and clustering coefficient[J].CAAI Transactions on Intelligent Systems,2016,(04):586.[doi:10.11992/tis.201601024]

备注/Memo

备注/Memo:
收稿日期:2014-11-25;改回日期:。
基金项目:国家自然科学基金资助项目(61374062);山东省杰出青年科学基金资助项目(JQ201419).
作者简介:晁永翠,女,1990年生,硕士研究生,主要研究方向为复杂网络的可控性;纪志坚,男,1973年生,教授,博士生导师,博士,主要研究方向为群体系统动力学与协调控制、复杂网络、切换动力系统的分析与控制、系统生物以及基于网络的控制系统等。主持国家自然科学基金项目3项,山东省杰出青年基金项目1项。山东省杰出青年基金获得者,发表学术论文70余篇,其中SCI收录23篇,EI收录50余篇;王耀威,男,1989年生,硕士研究生,主要研究方向为多智能体系统。
通讯作者:纪志坚.E-mail:jizhijian@pku.org.cn.
更新日期/Last Update: 2015-08-28