[1]徐鹏,谢广明,文家燕,等.事件驱动的强化学习多智能体编队控制[J].智能系统学报,2019,14(1):93-98.[doi:10.11992/tis.201807010]
 XU Peng,XIE Guangming,WEN Jiayan,et al.Event-triggered reinforcement learning formation control for multi-agent[J].CAAI Transactions on Intelligent Systems,2019,14(1):93-98.[doi:10.11992/tis.201807010]
点击复制

事件驱动的强化学习多智能体编队控制

参考文献/References:
[1] POLYDOROS A S, NALPANTIDIS L. Survey of model-based reinforcement learning:applications on robotics[J]. Journal of intelligent & robotic systems, 2017, 86(2):153-173.
[2] TSAURO G, TOURCTZKY D S, LN T K, et al. Advances in neural information processing systems[J]. Biochemical and biophysical research communications, 1997, 159(6).
[3] 梁爽, 曹其新, 王雯珊, 等. 基于强化学习的多定位组件自动选择方法[J]. 智能系统学报, 2016, 11(2):149-154 LIANG Shuang, CAO Qixin, WANG Wenshan, et al. An automatic switching method for multiple location components based on reinforcement learning[J]. CAAI transactions on intelligent systems, 2016, 11(2):149-154
[4] KIM H E, AHN H S. Convergence of multiagent Q-learning:multi action replay process approach[C]//Proceedings of 2010 IEEE International Symposium on Intelligent Control. Yokohama, Japan, 2010:789-794.
[5] ⅡMA H, KUROE Y. Swarm reinforcement learning methods improving certainty of learning for a multi-robot formation problem[C]//Proceedings of 2015 IEEE Congress on Evolutionary Computation. Sendai, Japan, 2015:3026-3033.
[6] MENG Xiangyu, CHEN Tongwen. Optimal sampling and performance comparison of periodic and event based impulse control[J]. IEEE transactions on automatic control, 2012, 57(12):3252-3259.
[7] DIMAROGONAS D V, FRAZZOLI E, JOHANSSON K H. Distributed event-triggered control for multi-agent systems[J]. IEEE transactions on automatic control, 2012, 57(5):1291-1297.
[8] XIE Duosi, XU Shengyuan, CHU Yuming, et al. Event-triggered average consensus for multi-agent systems with nonlinear dynamics and switching topology[J]. Journal of the franklin institute, 2015, 352(3):1080-1098.
[9] WU Yuanqing, MENG Xiangyu, XIE Lihua, et al. An input-based triggering approach to leader-following problems[J]. Automatica, 2017, 75:221-228.
[10] TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE transactions on automatic control, 2007, 52(9):1680-1685.
[11] WEN Jiayan, WANG Chen, XIE Guangming. Asynchronous distributed event-triggered circle formation of multi-agent systems[J]. Neurocomputing, 2018, 295:118-126.
[12] MENG Xiangyu, CHEN Tongwen. Event based agreement protocols for multi-agent networks[J]. Automatica, 2013, 49(7):2125-2132.
[13] ZHONG Xiangnan, NI Zhen, HE Haibo, et al. Event-triggered reinforcement learning approach for unknown nonlinear continuous-time system[C]//Proceedings of 2014 International Joint Conference on Neural Networks. Beijing, China, 2014:3677-3684.
[14] 张文旭, 马磊, 王晓东. 基于事件驱动的多智能体强化学习研究[J]. 智能系统学报, 2017, 12(1):82-87 ZHANG Wenxu, MA Lei, WANG Xiaodong. Reinforcement learning for event-triggered multi-agent systems[J]. CAAI transactions on intelligent systems, 2017, 12(1):82-87
[15] KRÖSE B J A. Learning from delayed rewards[J]. Robotics and autonomous systems, 1995, 15(4):233-235.
相似文献/References:
[1]谭树彬,刘建昌.Multi-Agent的连续轧制过程控制系统研究[J].智能系统学报,2008,3(2):150.
 TAN Shu-bin,LIU Jian-chang.Research On multiAgent based control system for continuous rolling process[J].CAAI Transactions on Intelligent Systems,2008,3():150.
[2]连传强,徐昕,吴军,等.面向资源分配问题的Q-CF多智能体强化学习[J].智能系统学报,2011,6(2):95.
 LIAN Chuanqiang,XU Xin,WU Jun,et al.Q-CF multiAgent reinforcement learningfor resource allocation problems[J].CAAI Transactions on Intelligent Systems,2011,6():95.
[3]雷明,周超,周绍磊,等.考虑时变时滞的多移动智能体分布式编队控制[J].智能系统学报,2012,7(6):536.
 LEI Ming,ZHOU Chao,ZHOU Shaolei,et al.Decentralized formation control of multiple mobile agents considering timevarying delay[J].CAAI Transactions on Intelligent Systems,2012,7():536.
[4]郭文强,高晓光,侯勇严,等.采用MSBN多智能体协同推理的智能农业车辆环境识别[J].智能系统学报,2013,8(5):453.[doi:10.3969/j.issn.1673-4785.201210057]
 GUO Wenqiang,GAO Xiaoguang,HOU Yongyan,et al.Environment recognition of intelligent agricultural vehicles based on MSBN and multi-agent coordinative inference[J].CAAI Transactions on Intelligent Systems,2013,8():453.[doi:10.3969/j.issn.1673-4785.201210057]
[5]梁爽,曹其新,王雯珊,等.基于强化学习的多定位组件自动选择方法[J].智能系统学报,2016,11(2):149.[doi:10.11992/tis.201510031]
 LIANG Shuang,CAO Qixin,WANG Wenshan,et al.An automatic switching method for multiple location components based on reinforcement learning[J].CAAI Transactions on Intelligent Systems,2016,11():149.[doi:10.11992/tis.201510031]
[6]周文吉,俞扬.分层强化学习综述[J].智能系统学报,2017,12(5):590.[doi:10.11992/tis.201706031]
 ZHOU Wenji,YU Yang.Summarize of hierarchical reinforcement learning[J].CAAI Transactions on Intelligent Systems,2017,12():590.[doi:10.11992/tis.201706031]
[7]张文旭,马磊,贺荟霖,等.强化学习的地-空异构多智能体协作覆盖研究[J].智能系统学报,2018,13(2):202.[doi:10.11992/tis.201609017]
 ZHANG Wenxu,MA Lei,HE Huilin,et al.Air-ground heterogeneous coordination for multi-agent coverage based on reinforced learning[J].CAAI Transactions on Intelligent Systems,2018,13():202.[doi:10.11992/tis.201609017]
[8]郭宪,方勇纯.仿生机器人运动步态控制:强化学习方法综述[J].智能系统学报,2020,15(1):152.[doi:10.11992/tis.201907052]
 GUO Xian,FANG Yongchun.Locomotion gait control for bionic robots: a review of reinforcement learning methods[J].CAAI Transactions on Intelligent Systems,2020,15():152.[doi:10.11992/tis.201907052]
[9]申翔翔,侯新文,尹传环.深度强化学习中状态注意力机制的研究[J].智能系统学报,2020,15(2):317.[doi:10.11992/tis.201809033]
 SHEN Xiangxiang,HOU Xinwen,YIN Chuanhuan.State attention in deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2020,15():317.[doi:10.11992/tis.201809033]
[10]莫宏伟,田朋.基于注意力融合的图像描述生成方法[J].智能系统学报,2020,15(4):740.[doi:10.11992/tis.201910039]
 MO Hongwei,TIAN Peng.An image caption generation method based on attention fusion[J].CAAI Transactions on Intelligent Systems,2020,15():740.[doi:10.11992/tis.201910039]
[11]张文旭,马磊,王晓东.基于事件驱动的多智能体强化学习研究[J].智能系统学报,2017,12(1):82.[doi:10.11992/tis.201604008]
 ZHANG Wenxu,MA Lei,WANG Xiaodong.Reinforcement learning for event-triggered multi-agent systems[J].CAAI Transactions on Intelligent Systems,2017,12():82.[doi:10.11992/tis.201604008]
[12]殷昌盛,杨若鹏,朱巍,等.多智能体分层强化学习综述[J].智能系统学报,2020,15(4):646.[doi:10.11992/tis.201909027]
 YIN Changsheng,YANG Ruopeng,ZHU Wei,et al.A survey on multi-agent hierarchical reinforcement learning[J].CAAI Transactions on Intelligent Systems,2020,15():646.[doi:10.11992/tis.201909027]

备注/Memo

收稿日期:2018-07-11。
基金项目:国家重点研发计划项目(2017YFB1400800);国家自然科学基金项目(91648120,61633002,51575005,61563006,61563005);广西高校工业过程智能控制技术重点实验室项目(IPICT-2016-04).
作者简介:徐鹏,男,1991年生,硕士研究生,主要研究方向为多智能体、强化学习、深度学习;谢广明,男,1972年生,教授,博士生导师,主要研究方向为复杂系统动力学与控制、智能仿生机器人多机器人系统与控制。现主持国家自然基金重点项目3项,发明专利授权10余项。曾荣获教育部自然科学奖一等奖、国家自然科学奖二等奖。发表学术论文300余篇,其中被SCI收录120余篇、EI收录120余篇;文家燕,男,1981年生,副教授,博士,主要研究方向为事件驱动控制、多智能体编队控制。发表学术论文10余篇。
通讯作者:文家燕.E-mail:wenjiayan2012@126.com

更新日期/Last Update: 1900-01-01
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134